Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/41876
Título: Fast and efficent multimodal eye biometrics using projective dictionary pair learning
Autores/as: Das, Abhijit
Mondal, Prabir
Pal, Umapada
Ferrer, Miguel Angel 
Blumenstein, Michael
Clasificación UNESCO: 120325 Diseño de sistemas sensores
Palabras clave: Biometrics
Dictionary Learning
Iris
Multimodal Biometrics
Sclera, et al.
Fecha de publicación: 2016
Publicación seriada: 2016 IEEE Congress on Evolutionary Computation, CEC 2016
Conferencia: 2016 IEEE Congress on Evolutionary Computation, CEC 2016 
Resumen: This work proposes a projective pairwise dictionary learning-based approach for fast and efficient multimodal eye biometrics. The work uses a faster Projective pairwise Discriminative Dictionary Learning (DL) in contrast to the traditional DL which uses synthesis DL. Projective Pairwise Discriminative Dictionary (PPDD) uses a synthesis dictionary and an analysis dictionary jointly to achieve the goal of pattern representation and discrimination. As the PPDD process of DL is in contrast to the use of l0 or l1-norm sparsity constraints on the representation coefficients adopted in most traditional DL, it works faster than other DL. Moreover, the blending of synthesis dictionary and an analysis dictionary also enhance the feature representation of the complex eye patterns. We employed the combination of sclera and iris traits to establish multimodal biometrics. The experimental study and analysis conducted fulfill the hypothesis we considered. In this work we employed a part of the UBIRIS version 1 dataset to conduct the experiments.
URI: http://hdl.handle.net/10553/41876
ISBN: 9781509006229
DOI: 10.1109/CEC.2016.7743953
Fuente: 2016 IEEE Congress on Evolutionary Computation, CEC 2016 (7743953), p. 1402-1408
Colección:Actas de congresos
miniatura
pdf
Adobe PDF (542,09 kB)
Vista completa

Citas SCOPUSTM   

6
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 25-feb-2024

Visitas

83
actualizado el 11-may-2024

Descargas

165
actualizado el 11-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.