Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/41876
Título: | Fast and efficent multimodal eye biometrics using projective dictionary pair learning | Autores/as: | Das, Abhijit Mondal, Prabir Pal, Umapada Ferrer, Miguel Angel Blumenstein, Michael |
Clasificación UNESCO: | 120325 Diseño de sistemas sensores | Palabras clave: | Biometrics Dictionary Learning Iris Multimodal Biometrics Sclera, et al. |
Fecha de publicación: | 2016 | Publicación seriada: | 2016 IEEE Congress on Evolutionary Computation, CEC 2016 | Conferencia: | 2016 IEEE Congress on Evolutionary Computation, CEC 2016 | Resumen: | This work proposes a projective pairwise dictionary learning-based approach for fast and efficient multimodal eye biometrics. The work uses a faster Projective pairwise Discriminative Dictionary Learning (DL) in contrast to the traditional DL which uses synthesis DL. Projective Pairwise Discriminative Dictionary (PPDD) uses a synthesis dictionary and an analysis dictionary jointly to achieve the goal of pattern representation and discrimination. As the PPDD process of DL is in contrast to the use of l0 or l1-norm sparsity constraints on the representation coefficients adopted in most traditional DL, it works faster than other DL. Moreover, the blending of synthesis dictionary and an analysis dictionary also enhance the feature representation of the complex eye patterns. We employed the combination of sclera and iris traits to establish multimodal biometrics. The experimental study and analysis conducted fulfill the hypothesis we considered. In this work we employed a part of the UBIRIS version 1 dataset to conduct the experiments. | URI: | http://hdl.handle.net/10553/41876 | ISBN: | 9781509006229 | DOI: | 10.1109/CEC.2016.7743953 | Fuente: | 2016 IEEE Congress on Evolutionary Computation, CEC 2016 (7743953), p. 1402-1408 |
Colección: | Actas de congresos |
Citas SCOPUSTM
6
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
3
actualizado el 25-feb-2024
Visitas
83
actualizado el 11-may-2024
Descargas
165
actualizado el 11-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.