Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/41711
Título: | Dynamic signature verification system based on one real signature | Autores/as: | Diaz, Moises Fischer, Andreas Ferrer, Miguel A. Plamondon, Rejean |
Clasificación UNESCO: | 120325 Diseño de sistemas sensores | Palabras clave: | Rapid Human Movements Feature-Extraction Kinematic Theory Online Recognition, et al. |
Fecha de publicación: | 2018 | Publicación seriada: | IEEE Transactions on Cybernetics | Resumen: | The dynamic signature is a biometric trait widely used and accepted for verifying a person's identity. Current automatic signature-based biometric systems typically require five, ten, or even more specimens of a person's signature to learn intrapersonal variability sufficient to provide an accurate verification of the individual's identity. To mitigate this drawback, this paper proposes a procedure for training with only a single reference signature. Our strategy consists of duplicating the given signature a number of times and training an automatic signature verifier with each of the resulting signatures. The duplication scheme is based on a sigma lognormal decomposition of the reference signature. Two methods are presented to create human-like duplicated signatures: the first varies the strokes' lognormal parameters (stroke-wise) whereas the second modifies their virtual target points (target-wise). A challenging benchmark, assessed with multiple state-of-the-art automatic signature verifiers and multiple databases, proves the robustness of the system. Experimental results suggest that our system, with a single reference signature, is capable of achieving a similar performance to standard verifiers trained with up to five signature specimens. | URI: | http://hdl.handle.net/10553/41711 | ISSN: | 2168-2267 | DOI: | 10.1109/TCYB.2016.2630419 | Fuente: | IEEE Transactions on Cybernetics [ISSN 2168-2267], v. 48 (1), p. 228-239 |
Colección: | Artículos |
Citas SCOPUSTM
98
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
79
actualizado el 15-dic-2024
Visitas
38
actualizado el 02-mar-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.