Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/41588
Título: Locating a shopping centre by considering demand disaggregated by categories
Autores/as: Suárez-Vega, Rafael 
Gutiérrez-Acuña, José Luis
Rodríguez-Díaz, Manuel 
Clasificación UNESCO: 12 Matemáticas
Palabras clave: Geographically Weighted Regression
Competitive Facility Location
General Framework
Gis Tools
Models, et al.
Fecha de publicación: 2018
Publicación seriada: IMA Journal Management Mathematics 
Resumen: We model a shopping centre. The demand for goods and services in shopping centres is classified in four different categories: food, leisure, household goods and clothing. As some of these sectors do not provide essential goods and services, a Huff customer-choice model is applied that sets a parameter absorbing any lost demand when there is a shortfall in customer attraction. For each category, the parameters for the Huff model are estimated both globally (by means of ordinary least squares, assuming the same effect for the parameters throughout the entire market), and locally (using geographically weighted regression, considering that parameters depend on the customers’ location). The proposed model was applied to a real data case on the island of Gran Canaria (Spain) to determine the best location for a shopping centre selling all four categories of goods. Finally, a study is conducted to determine how robust the solution is with respect to the lost demand parameter, and a comparison is made between the solutions obtained, using both global and local calibration methods.
URI: http://hdl.handle.net/10553/41588
ISSN: 1471-6798
DOI: 10.1093/imaman/dpx006
Fuente: IMA Journal Management Mathematics [ISSN 1471-6798], v. 29 (4), p. 435–456
Colección:Artículos
miniatura
pdf
Adobe PDF (3,47 MB)
Vista completa

Citas SCOPUSTM   

2
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 17-nov-2024

Visitas

185
actualizado el 09-mar-2024

Descargas

307
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.