Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/41588
DC FieldValueLanguage
dc.contributor.authorSuárez-Vega, Rafael-
dc.contributor.authorGutiérrez-Acuña, José Luis-
dc.contributor.authorRodríguez-Díaz, Manuel-
dc.date.accessioned2018-07-17T15:42:39Z-
dc.date.available2018-07-17T15:42:39Z-
dc.date.issued2018-
dc.identifier.issn1471-6798-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/41588-
dc.description.abstractWe model a shopping centre. The demand for goods and services in shopping centres is classified in four different categories: food, leisure, household goods and clothing. As some of these sectors do not provide essential goods and services, a Huff customer-choice model is applied that sets a parameter absorbing any lost demand when there is a shortfall in customer attraction. For each category, the parameters for the Huff model are estimated both globally (by means of ordinary least squares, assuming the same effect for the parameters throughout the entire market), and locally (using geographically weighted regression, considering that parameters depend on the customers’ location). The proposed model was applied to a real data case on the island of Gran Canaria (Spain) to determine the best location for a shopping centre selling all four categories of goods. Finally, a study is conducted to determine how robust the solution is with respect to the lost demand parameter, and a comparison is made between the solutions obtained, using both global and local calibration methods.-
dc.languageeng-
dc.relation.ispartofIMA Journal Management Mathematics-
dc.sourceIMA Journal Management Mathematics [ISSN 1471-6798], v. 29 (4), p. 435–456-
dc.subject12 Matemáticas-
dc.subject.otherGeographically Weighted Regression-
dc.subject.otherCompetitive Facility Location-
dc.subject.otherGeneral Framework-
dc.subject.otherGis Tools-
dc.subject.otherModels-
dc.subject.otherNonstationarity-
dc.subject.otherInference-
dc.subject.otherChoice-
dc.subject.otherHuff Model-
dc.subject.otherSpatial Non-Stationarity-
dc.subject.otherGeographically Weighted Regression-
dc.subject.otherCompetitive Location-
dc.subject.otherDisaggregate Demand-
dc.titleLocating a shopping centre by considering demand disaggregated by categories-
dc.typeinfo:eu-repo/semantics/article-
dc.typeArticle-
dc.identifier.doi10.1093/imaman/dpx006-
dc.identifier.scopus85055434165-
dc.identifier.isi000455282700005-
dc.contributor.authorscopusid56606361200-
dc.contributor.authorscopusid56394665800-
dc.contributor.authorscopusid23976518500-
dc.identifier.eissn1471-6798-
dc.description.lastpage456-
dc.identifier.issue4-
dc.description.firstpage435-
dc.relation.volume29-
dc.investigacionCiencias Sociales y Jurídicas-
dc.type2Artículo-
dc.contributor.daisngid2274874-
dc.contributor.daisngid26275892-
dc.contributor.daisngid28993219-
dc.description.numberofpages22-
dc.contributor.wosstandardWOS:Suarez-Vega, R-
dc.contributor.wosstandardWOS:Gutierrez-Acuna, JL-
dc.contributor.wosstandardWOS:Rodriguez-Diaz, M-
dc.date.coverdateOctubre 2018-
dc.identifier.ulpgces
dc.description.sjr1,018
dc.description.jcr1,125
dc.description.sjrqQ1
dc.description.jcrqQ3
dc.description.scieSCIE
dc.description.ssciSSCI
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.deptDepartamento de Economía y Dirección de Empresas-
crisitem.author.orcid0000-0002-1926-3121-
crisitem.author.orcid0000-0003-2513-418X-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameSuárez Vega, Rafael Ricardo-
crisitem.author.fullNameRodríguez Díaz, Manuel-
Appears in Collections:Artículos
Thumbnail
pdf
Adobe PDF (3,47 MB)
Show simple item record

SCOPUSTM   
Citations

2
checked on Aug 7, 2022

WEB OF SCIENCETM
Citations

2
checked on Aug 7, 2022

Page view(s)

103
checked on Jul 10, 2022

Download(s)

180
checked on Jul 10, 2022

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.