Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/41588
Campo DC Valoridioma
dc.contributor.authorSuárez-Vega, Rafael-
dc.contributor.authorGutiérrez-Acuña, José Luis-
dc.contributor.authorRodríguez-Díaz, Manuel-
dc.date.accessioned2018-07-17T15:42:39Z-
dc.date.available2018-07-17T15:42:39Z-
dc.date.issued2018-
dc.identifier.issn1471-6798-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/41588-
dc.description.abstractWe model a shopping centre. The demand for goods and services in shopping centres is classified in four different categories: food, leisure, household goods and clothing. As some of these sectors do not provide essential goods and services, a Huff customer-choice model is applied that sets a parameter absorbing any lost demand when there is a shortfall in customer attraction. For each category, the parameters for the Huff model are estimated both globally (by means of ordinary least squares, assuming the same effect for the parameters throughout the entire market), and locally (using geographically weighted regression, considering that parameters depend on the customers’ location). The proposed model was applied to a real data case on the island of Gran Canaria (Spain) to determine the best location for a shopping centre selling all four categories of goods. Finally, a study is conducted to determine how robust the solution is with respect to the lost demand parameter, and a comparison is made between the solutions obtained, using both global and local calibration methods.-
dc.languageeng-
dc.relation.ispartofIMA Journal Management Mathematics-
dc.sourceIMA Journal Management Mathematics [ISSN 1471-6798], v. 29 (4), p. 435–456-
dc.subject12 Matemáticas-
dc.subject.otherGeographically Weighted Regression-
dc.subject.otherCompetitive Facility Location-
dc.subject.otherGeneral Framework-
dc.subject.otherGis Tools-
dc.subject.otherModels-
dc.subject.otherNonstationarity-
dc.subject.otherInference-
dc.subject.otherChoice-
dc.subject.otherHuff Model-
dc.subject.otherSpatial Non-Stationarity-
dc.subject.otherGeographically Weighted Regression-
dc.subject.otherCompetitive Location-
dc.subject.otherDisaggregate Demand-
dc.titleLocating a shopping centre by considering demand disaggregated by categories-
dc.typeinfo:eu-repo/semantics/article-
dc.typeArticle-
dc.identifier.doi10.1093/imaman/dpx006-
dc.identifier.scopus85055434165-
dc.identifier.isi000455282700005-
dc.contributor.authorscopusid56606361200-
dc.contributor.authorscopusid56394665800-
dc.contributor.authorscopusid23976518500-
dc.identifier.eissn1471-6798-
dc.description.lastpage456-
dc.identifier.issue4-
dc.description.firstpage435-
dc.relation.volume29-
dc.investigacionCiencias Sociales y Jurídicas-
dc.type2Artículo-
dc.contributor.daisngid2274874-
dc.contributor.daisngid26275892-
dc.contributor.daisngid28993219-
dc.description.numberofpages22-
dc.contributor.wosstandardWOS:Suarez-Vega, R-
dc.contributor.wosstandardWOS:Gutierrez-Acuna, JL-
dc.contributor.wosstandardWOS:Rodriguez-Diaz, M-
dc.date.coverdateOctubre 2018-
dc.identifier.ulpgces
dc.description.sjr1,018
dc.description.jcr1,125
dc.description.sjrqQ1
dc.description.jcrqQ3
dc.description.scieSCIE
dc.description.ssciSSCI
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.deptGIR Organización y dirección de empresas (Management)-
crisitem.author.deptDepartamento de Economía y Dirección de Empresas-
crisitem.author.orcid0000-0002-1926-3121-
crisitem.author.orcid0000-0003-2513-418X-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.parentorgDepartamento de Economía y Dirección de Empresas-
crisitem.author.fullNameSuárez Vega, Rafael Ricardo-
crisitem.author.fullNameRodríguez Díaz, Manuel-
Colección:Artículos
miniatura
pdf
Adobe PDF (3,47 MB)
Vista resumida

Citas SCOPUSTM   

2
actualizado el 10-nov-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 10-nov-2024

Visitas

185
actualizado el 09-mar-2024

Descargas

307
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.