Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/37786
Título: | Multiple generation of Bengali static signatures | Autores/as: | Diaz, Moises Chanda, S. Ferrer, Miguel A. Banerjee, C. K. Majumdar, A. Carmona-Duarte, Cristina Acharya, P. Pal, U. |
Clasificación UNESCO: | 330405 Sistemas de reconocimiento de caracteres | Palabras clave: | Document analysis Handwriting signatures Off-line signatures Synthetic signatures |
Fecha de publicación: | 2017 | Publicación seriada: | Proceedings of International Conference on Frontiers in Handwriting Recognition, ICFHR | Conferencia: | 15th International Conference on Frontiers in Handwriting Recognition, ICFHR 2016 | Resumen: | Handwritten signature datasets are really necessary for the purpose of developing and training automatic signature verification systems. It is desired that all samples in a signature dataset should exhibit both inter-personal and intra-personal variability. A possibility to model this reality seems to be obtained through the synthesis of signatures. In this paper we propose a method based on motor equivalence model theory to generate static Bengali signatures. This theory divides the human action to write mainly into cognitive and motor levels. Due to difference between scripts, we have redesigned our previous synthesizer [1,2], which generates static Western signatures. The experiments assess whether this method can approach the intra and inter-personal variability of the Bengali-100 Static Signature DB from a performance-based validation. The similarities reported in the experimental results proof the ability of the synthesizer to generate signature images in this script. � 2016 IEEE | URI: | http://hdl.handle.net/10553/37786 | ISBN: | 9781509009817 | ISSN: | 2167-6445 | DOI: | 10.1109/ICFHR.2016.0021 | Fuente: | Proceedings of International Conference on Frontiers in Handwriting Recognition, ICFHR[ISSN 2167-6445],v. 0 (7814037), p. 42-47 |
Colección: | Actas de congresos |
Citas SCOPUSTM
4
actualizado el 17-nov-2024
Visitas
52
actualizado el 27-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.