Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/37085
Título: | Generation of duplicated off-line signature images for verification systems | Autores/as: | DIaz, Moises Ferrer, Miguel A. Eskander, George S. Sabourin, Robert |
Clasificación UNESCO: | 120325 Diseño de sistemas sensores 120304 Inteligencia artificial |
Palabras clave: | Biometric signature identification Signature synthesis Off-line signature verification Performance evaluation Off-line signature recognition, et al. |
Fecha de publicación: | 2017 | Publicación seriada: | IEEE Transactions on Pattern Analysis and Machine Intelligence | Resumen: | Biometric researchers have historically seen signature duplication as a procedure relevant to improving the performance of automatic signature verifiers. Different approaches have been proposed to duplicate dynamic signatures based on the heuristic affine transformation, nonlinear distortion and the kinematic model of the motor system. The literature on static signature duplication is limited and as far as we know based on heuristic affine transforms and does not seem to consider the recent advances in human behavior modeling of neuroscience. This paper tries to fill this gap by proposing a cognitive inspired algorithm to duplicate off-line signatures. The algorithm is based on a set of nonlinear and linear transformations which simulate the human spatial cognitive map and motor system intra-personal variability during the signing process. The duplicator is evaluated by increasing artificially a training sequence and verifying that the performance of four state-of-the-art off-line signature classifiers using two publicly databases have been improved on average as if we had collected three more real signatures. | URI: | http://hdl.handle.net/10553/37085 | ISSN: | 0162-8828 | DOI: | 10.1109/TPAMI.2016.2560810 | Fuente: | IEEE Transactions on Pattern Analysis and Machine Intelligence[ISSN 0162-8828],v. 39 (7463072), p. 951-964 |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.