Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/35433
Título: Automatic correction of perspective and optical distortions
Autores/as: Santana-Cedrés, Daniel 
Gomez, Luis 
Alemán-Flores, Miguel 
Salgado de la Nuez, Agustín Javier 
Esclarín, Julio 
Mazorra, Luis 
Alvarez, Luis 
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
Palabras clave: Lens distortion
Vanishing points
Perspective correction
Fecha de publicación: 2017
Publicación seriada: Computer Vision and Image Understanding 
Resumen: Perspective and optical (lens) distortions are aberrations of very different nature that can simultaneously affect an image. Perspective distortion is caused by the position of the camera, especially when it is too close to the scene. Optical distortion is a lens aberration which causes straight lines in the scene to be projected onto the image as distorted lines. Standard methods to correct perspective distortion are based on the estimation of the vanishing points, which can fail if lens distortion is significant. In this paper, we introduce a new method which addresses both problems in a single framework. First we estimate a lens distortion model by extracting a collection of distorted lines in the image. These distorted lines are afterward rectified by means of the lens distortion model and used to estimate the vanishing points. Finally, the vanishing points are used to correct the perspective distortion. We present a variety of experiments to show the reliability of the proposed method.
URI: http://hdl.handle.net/10553/35433
ISSN: 1077-3142
DOI: 10.1016/j.cviu.2017.05.016
Fuente: Computer Vision and Image Understanding[ISSN 1077-3142],v. 161, p. 1-10
Colección:Artículos
pdf
Adobe PDF (561,93 kB)
Vista completa

Citas SCOPUSTM   

28
actualizado el 29-dic-2024

Citas de WEB OF SCIENCETM
Citations

26
actualizado el 29-dic-2024

Visitas

199
actualizado el 12-oct-2024

Descargas

206
actualizado el 12-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.