Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/35384
Título: | Detection of different voice diseases based on the nonlinear characterization of speech signals | Autores/as: | Travieso-González, Carlos M. Alonso-Hernández, Jesús B. Orozco-Arroyave, Juan Rafael Vargas Bonilla, Jesús Francisco Nöth, Elmar Ravelo-García, Antonio |
Clasificación UNESCO: | 530602 Innovación tecnológica 3325 Tecnología de las telecomunicaciones 3304 Tecnología de los ordenadores |
Palabras clave: | Nonlinear dynamic parameterization Hidden Markov models Laryngealpathologies Hypernasality Disarhtria, et al. |
Fecha de publicación: | 2017 | Publicación seriada: | Expert Systems with Applications | Resumen: | This work describes a novel methodology to characterize voice diseases by using nonlinear dynamics, considering different complexity measures that are mainly based on the analysis of the time delay embedded space. The feature space is represented with a DHMM and a further transformation of the DHMM states to a hyperdimensional space is performed. The discrimination between healthy and pathological speech signals is peformed by using a RBF-SVM which is trained following a K-fold cross-validation strategy. Results of around 99\% of accuracy are obtained for three different voice disorders, disphonia due to laryngeal pathologies, hypernasality due to cleft lip and palate, and dysarthria due to Parkinson's disease. | URI: | http://hdl.handle.net/10553/35384 | ISSN: | 0957-4174 | DOI: | 10.1016/j.eswa.2017.04.012 | Fuente: | Expert Systems with Applications [ISSN 0957-4174], v. 82 (1), p. 184-195 |
Colección: | Artículos |
Citas SCOPUSTM
39
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
31
actualizado el 17-nov-2024
Visitas
50
actualizado el 11-feb-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.