Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/35384
Título: Detection of different voice diseases based on the nonlinear characterization of speech signals
Autores/as: Travieso-González, Carlos M. 
Alonso-Hernández, Jesús B. 
Orozco-Arroyave, Juan Rafael
Vargas Bonilla, Jesús Francisco
Nöth, Elmar
Ravelo-García, Antonio 
Clasificación UNESCO: 530602 Innovación tecnológica
3325 Tecnología de las telecomunicaciones
3304 Tecnología de los ordenadores
Palabras clave: Nonlinear dynamic parameterization
Hidden Markov models
Laryngealpathologies
Hypernasality
Disarhtria, et al.
Fecha de publicación: 2017
Publicación seriada: Expert Systems with Applications 
Resumen: This work describes a novel methodology to characterize voice diseases by using nonlinear dynamics, considering different complexity measures that are mainly based on the analysis of the time delay embedded space. The feature space is represented with a DHMM and a further transformation of the DHMM states to a hyperdimensional space is performed. The discrimination between healthy and pathological speech signals is peformed by using a RBF-SVM which is trained following a K-fold cross-validation strategy. Results of around 99\% of accuracy are obtained for three different voice disorders, disphonia due to laryngeal pathologies, hypernasality due to cleft lip and palate, and dysarthria due to Parkinson's disease.
URI: http://hdl.handle.net/10553/35384
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2017.04.012
Fuente: Expert Systems with Applications [ISSN 0957-4174], v. 82 (1), p. 184-195
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.