Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/25270
Título: | Shot classification and keyframe detection for vision based speakers diarization in parliamentary debates | Autores/as: | Marín Reyes, Pedro Antonio Lorenzo-Navarro, Javier Castrillón-Santana, Modesto Sánchez Nielsen, Elena |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Visual diarization Re-identification CNN classification Biometric traits |
Fecha de publicación: | 2016 | Editor/a: | Springer | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 17th Conference of the Spanish-Association-for-Artificial-Intelligence (CAEPIA 2016) 17th Conference of the Spanish Association for Artificial Intelligence, (CAEPIA 2016) |
Resumen: | Automatic labelling of speakers is an essential task for speakers diarization in parliamentary debates given the huge amount of video data to annotate. In this paper, we address the speaker diarization problem as a visual speaker re-identification issue with a special emphasis on the analysis of different shot types. We propose two approaches that makes use of convolutional neural networks (CNN) and biometric traits for keyframe extraction. | URI: | http://hdl.handle.net/10553/25270 | ISBN: | 978-3-319-44635-6 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-319-44636-3_5 | Fuente: | Advances in Artificial Intelligence. CAEPIA 2016. Lecture Notes in Computer Science, v. 9868 LNCS, p. 48-57 |
Colección: | Capítulo de libro |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.