Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/25269
Título: Local descriptors fusion for mobile iris verification
Autores/as: Aginako, Naiara
Martínez Otzeta, Jose María
Sierra, Basilio
Castrillón-Santana, Modesto 
Lorenzo Navarro, José Javier 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Biometrics
Iris verification
Fecha de publicación: 2016
Publicación seriada: Proceedings - International Conference on Pattern Recognition 
Conferencia: 23rd International Conference on Pattern Recognition (ICPR) 
23rd International Conference on Pattern Recognition, ICPR 2016 
Resumen: This paper summarizes the proposal submitted by the joint team conformed by researchers from UPV and ULPGC to the Mobile Iris CHallenge Evaluation II. The approach makes use of a state-of-the-art iris segmentation technique, to later extract features making use of local descriptors. Those suitable to the problem are selected after evaluating a collection of 15 local descriptors, covering a range of different grid configuration setups. A Machine Learning approach is used, learning a supervised classifier to deal with the descriptors data. A classifier is obtained for each descriptor, and the best ones are combined in a multi-classifier system. The final step fuses the classifier outputs obtained for 5 different local descriptors, to compute the dissimilarity measure for a pair of iris images.
URI: http://hdl.handle.net/10553/25269
ISBN: 9781509048472
ISSN: 1051-4651
DOI: 10.1109/ICPR.2016.7899627
Fuente: International Conference on Pattern Recognition [ISSN 1051-4651], article number 7899627, p. 165-169
Colección:Actas de congresos
miniatura
preprint
Adobe PDF (833,6 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.