Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/25269
Título: Local descriptors fusion for mobile iris verification
Autores/as: Aginako, Naiara
Martínez Otzeta, Jose María
Sierra, Basilio
Castrillón-Santana, Modesto 
Lorenzo Navarro, José Javier 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Biometrics
Iris verification
Fecha de publicación: 2016
Publicación seriada: Proceedings - International Conference on Pattern Recognition 
Conferencia: 23rd International Conference on Pattern Recognition (ICPR) 
23rd International Conference on Pattern Recognition, ICPR 2016 
Resumen: This paper summarizes the proposal submitted by the joint team conformed by researchers from UPV and ULPGC to the Mobile Iris CHallenge Evaluation II. The approach makes use of a state-of-the-art iris segmentation technique, to later extract features making use of local descriptors. Those suitable to the problem are selected after evaluating a collection of 15 local descriptors, covering a range of different grid configuration setups. A Machine Learning approach is used, learning a supervised classifier to deal with the descriptors data. A classifier is obtained for each descriptor, and the best ones are combined in a multi-classifier system. The final step fuses the classifier outputs obtained for 5 different local descriptors, to compute the dissimilarity measure for a pair of iris images.
URI: http://hdl.handle.net/10553/25269
ISBN: 9781509048472
ISSN: 1051-4651
DOI: 10.1109/ICPR.2016.7899627
Fuente: International Conference on Pattern Recognition [ISSN 1051-4651], article number 7899627, p. 165-169
Colección:Actas de congresos
miniatura
preprint
Adobe PDF (833,6 kB)
Vista completa

Citas SCOPUSTM   

5
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 25-feb-2024

Visitas

125
actualizado el 23-nov-2024

Descargas

240
actualizado el 23-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.