Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/25269
Title: Local descriptors fusion for mobile iris verification
Authors: Aginako, Naiara
Martínez Otzeta, Jose María
Sierra, Basilio
Castrillón-Santana, Modesto 
Lorenzo Navarro, José Javier 
UNESCO Clasification: 120304 Inteligencia artificial
Keywords: Biometrics
Iris verification
Issue Date: 2016
Journal: Proceedings - International Conference on Pattern Recognition 
Conference: 23rd International Conference on Pattern Recognition (ICPR) 
23rd International Conference on Pattern Recognition, ICPR 2016 
Abstract: This paper summarizes the proposal submitted by the joint team conformed by researchers from UPV and ULPGC to the Mobile Iris CHallenge Evaluation II. The approach makes use of a state-of-the-art iris segmentation technique, to later extract features making use of local descriptors. Those suitable to the problem are selected after evaluating a collection of 15 local descriptors, covering a range of different grid configuration setups. A Machine Learning approach is used, learning a supervised classifier to deal with the descriptors data. A classifier is obtained for each descriptor, and the best ones are combined in a multi-classifier system. The final step fuses the classifier outputs obtained for 5 different local descriptors, to compute the dissimilarity measure for a pair of iris images.
URI: http://hdl.handle.net/10553/25269
ISBN: 9781509048472
ISSN: 1051-4651
DOI: 10.1109/ICPR.2016.7899627
Source: International Conference on Pattern Recognition [ISSN 1051-4651], article number 7899627, p. 165-169
Appears in Collections:Actas de congresos
Thumbnail
preprint
Adobe PDF (833,6 kB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.