Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/17856
Título: | Fast and accurate hand pose detection for human-robot interaction | Autores/as: | Antón Canalís, Luis Sánchez Nielsen, Elena Castrillón-Santana, Modesto |
Clasificación UNESCO: | 120304 Inteligencia artificial | Fecha de publicación: | 2005 | Publicación seriada: | Lecture Notes in Computer Science | Resumen: | Enabling natural human-robot interaction using computer vision based applications requires fast and accurate hand detection. However, previous works in this field assume different constraints, like a limitation in the number of detected gestures, because hands are highly complex objects difficult to locate. This paper presents an approach which integrates temporal coherence cues and hand detection based on wrists using a cascade classifier. With this approach, we introduce three main contributions: (1) a transparent initialization mechanism without user participation for segmenting hands independently of their gesture, (2) a larger number of detected gestures as well as a faster training phase than previous cascade classifier based methods and (3) near real-time performance for hand pose detection in video streams. | URI: | http://hdl.handle.net/10553/17856 | ISBN: | 3-540-26153-2 | ISSN: | 0302-9743 | DOI: | 10.1007/11492429_67 | Fuente: | Lecture Notes in Computer Science[ISSN 0302-9743],v. 3522, p. 553-560 |
Colección: | Actas de congresos |
Citas SCOPUSTM
7
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 25-feb-2024
Visitas
83
actualizado el 30-sep-2023
Descargas
164
actualizado el 30-sep-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Este elemento está sujeto a una licencia Licencia Creative Commons