Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/17856
Título: Fast and accurate hand pose detection for human-robot interaction
Autores/as: Antón Canalís, Luis
Sánchez Nielsen, Elena
Castrillón-Santana, Modesto 
Clasificación UNESCO: 120304 Inteligencia artificial
Fecha de publicación: 2005
Publicación seriada: Lecture Notes in Computer Science 
Resumen: Enabling natural human-robot interaction using computer vision based applications requires fast and accurate hand detection. However, previous works in this field assume different constraints, like a limitation in the number of detected gestures, because hands are highly complex objects difficult to locate. This paper presents an approach which integrates temporal coherence cues and hand detection based on wrists using a cascade classifier. With this approach, we introduce three main contributions: (1) a transparent initialization mechanism without user participation for segmenting hands independently of their gesture, (2) a larger number of detected gestures as well as a faster training phase than previous cascade classifier based methods and (3) near real-time performance for hand pose detection in video streams.
URI: http://hdl.handle.net/10553/17856
ISBN: 3-540-26153-2
ISSN: 0302-9743
DOI: 10.1007/11492429_67
Fuente: Lecture Notes in Computer Science[ISSN 0302-9743],v. 3522, p. 553-560
Colección:Actas de congresos
miniatura
Postprint
Adobe PDF (159,96 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons