Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/17812
Título: Multi-scale score level fusion of local descriptors for gender classification in the wild
Autores/as: Castrillón-Santana, Modesto 
Lorenzo Navarro, José Javier 
Ramón Balmaseda, Enrique José 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Soft biometrics
Gender classification
Local descriptors
Score level fusion
CNN
Fecha de publicación: 2017
Publicación seriada: Multimedia Tools and Applications 
Resumen: The 2015 FRVT gender classification (GC) report evidences the problems that current approaches tackle in situations with large variations in pose, illumination, background and facial expression. The report suggests that both commercial and research solutions are hardly able to reach an accuracy over 90% for The Images of Groups dataset, a proven scenario exhibiting unrestricted or in the wild conditions. In this paper, we focus on this challenging dataset, stepping forward in GC performance by observing: 1) recent literature results combining multiple local descriptors, and 2) the psychophysics evidences of the greater importance of the ocular and mouth areas to solve this task...
URI: http://hdl.handle.net/10553/17812
ISSN: 1380-7501
DOI: 10.1007/s11042-016-3653-2
Fuente: Multimedia Tools and Applications [ISSN 1380-7501], v. 76 (4), p. 4695–4711
Colección:Artículos
miniatura
Preprint
Adobe PDF (785,99 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons