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Abstract The 2015 FRVT gender classification (GC) report evidences the
problems that current approaches tackle in situations with large variations in
pose, illumination, background and facial expression. The report suggests that
both commercial and research solutions are hardly able to reach an accuracy
over 90% for The Images of Groups dataset, a proven scenario exhibiting un-
restricted or in the wild conditions. In this paper, we focus on this challenging
dataset, stepping forward in GC performance by observing: 1) recent liter-
ature results combining multiple local descriptors, and 2) the psychophysics
evidences of the greater importance of the ocular and mouth areas to solve
this task. We therefore make use of holistic and inner facial patches to extract
features, that are later combined via a score level fusion strategy. The achieved
results support the main information provided by the ocular and the mouth
areas. Indeed, the combination of multiscale extracted features increases the
overall accuracy to over 94%, reducing notoriously the classification error if
compared with tuned holistic and deep learning approaches.
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1 Introduction

Soft Biometrics have attracted the research community attention, either in sce-
narios where it is necessary to extract characteristics to describe anonymous
individuals, or to improve the performance in identity recognition applica-
tions [17,26,38]. We adopt the soft biometrics definition as discrete static and
dynamic non unique attributes, that qualitatively separate humans into non-
overlapping groups. However, these characteristics lack the distinctiveness and
permanence to sufficiently differentiate any two individuals [26]. To illustrate
them, we may mention gender, gait, race, mood and apparent age [27,48].

A relevant soft biometric trait is gender. In fact, gender classification (GC)
is an active research field with different scenarios of application. Its challenges
and relevance have been recently stated in the 2015 Face Recognition Vendor
Test (FRVT) related for the first time to this topic [37]. That evaluation points
out classification error differences between GC with constrained or controlled
datasets, and unconstrained or in the wild benchmarks. In the former scenario,
standard commercial solutions are able to reach an accuracy around 96.5%
with an independent dataset containing roughly one million samples. However
in the latter, these solutions are not able to keep a similar performance in
smaller datasets, but containing larger range of variation in terms of pose,
illumination, etc.

Two theoretically unconstrained datasets were evaluated in the FRVT re-
view: 1) The Labeled Faces in the Wild (LFW) [25], and 2) The Images of
Groups (GROUPS) [20]. On the one side, the best accuracy achieved for LFW
was 95.2%, quite close to the numbers reported for constrained datasets. On
the other side, the accuracy was significantly lower for GROUPS, hardly reach-
ing 90.4%, suggesting the yet difficult scenario represented by this particular
dataset. A similar conclusion has been highlighted by different authors in re-
cent surveys [37,38].

Certainly, GROUPS presents larger variations in terms of pose, background
and resolution, see Fig. 1. Additionally, the presence of multiple samples of
the same individual is reduced, contrary to LFW, where that circumstance
produces an optimistic performance as pointed out by Baluja and Rowley [4].

Moving to the research community results, Table 1 summarizes the most
recently reported results for both datasets. Again, the published accuracies
suggest that GROUPS is the most complex one. The achieved accuracies are
however not comparable to those obtained by commercial systems. Indeed, the
research literature results are based on cross-validation, i.e. partitioning the
data into complementary sets, repeating for each one the experimental eval-
uation. Instead, commercial solutions are evaluated using a black-box testing
protocol, where there is no knowledge of the system internal structure, i.e. no
specific tuning is done for the particular benchmark.

In the search of alternatives to increase GC performance, recently some
improvement has been observed making use of strategies that compute features
at multiple resolutions of the target area [2,8]. This focus has been combined
with the fusion of different descriptors in our recent previous works. In [8]
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Fig. 1 Sample images respectively of The images of Groups ([20]) and The Labeled Faces
in the Wild ([25]) datasets. Their respective original resolutions are 391×293 and 249×249
pixels, suggesting a relevant difference in the facial pattern resolution.

the features are extracted from the face and its local context, integrating
an additional specialization for the periocular area [11]. Indeed both actions
introduce some level of redundancy, but the resulting performance suggests
that an adequate design supports an accuracy increase. An additional proven
benefit of descriptors fusion for GC is the reduction of the occurrences of
ambiguous cases [7]. Considering as ambiguous, those samples reporting a
classification score close to the border between the female and male classes.

The aim of this work is to carry out a deeper analysis to evaluate whether
the relevant areas of the facial pattern. according to psychophysics. may im-
prove the overall GC accuracy as has already been proved for the periocular
area. This work extends [10], firstly almost doubling the number of descriptors
evaluated (from 8 to 15). Secondly analyzing the optimal grid resolutions not
only for the inner facial areas, i.e. periocular and mouth, but also the whole
face and the head and shoulders areas. And finally including in the comparison
deep learning based gender classifiers.

The contributions of this work are: 1) independently both the periocular
and the mouth area provide an accuracy greater than 80% for GROUPS; 2)
finding the optimal grid resolution for each pattern and descriptor; 3) the
adequate fusion of features extracted from multi scale facial patterns, reports
a significant increase in terms of GC accuracy, reaching over 94% accuracy
for GROUPS; and 4) as far as we know, one of the first GC evaluations of
Convolutional Neural Networks (CNN) in GROUPS.

2 Related work

In this section, we summarize briefly the approaches whose results are re-
ported in Table 1 for GROUPS and LFW. The reader must observe that the
evaluation protocol is not exactly the same in most works. Indeed, it is not
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Table 1 GC accuracies in recent research literature for LFW and GROUPS. The whole
dataset is used (about 28, 000 samples for GROUPS or 13, 233 for LFW), with the excep-
tion for GROUPS of 1 Dago’s protocol containing about 14, 000 samples with inter ocular
distance > 20, 2 22, 778 automatically detected faces, 3 > 12 years old; and for LFW of
4 7, 443 of the total images, 5 BEFIT protocol, and 6 half dataset.

Reference Dataset Evaluation Protocol Accuracy (%)
[15]

GROUPS
Dago1

86.6
[8] 89.8
[9] 91.6
[36] 90.6
[19] 91.6
[11] 92.4
[31]

Detected faces2
86.4

[13] 90.4
[6] Adults3 80.5
[23]

Full dataset
87.1

[9] 90.8
[42]

LFW

Subset4
94.8

[45] 98.0
[36]

BEFIT5 96.2
[15] 94.0
[40] Half dataset6 98.0
[6]

Full dataset
79.5

[41] 94.6
[28] 96.9

common that full datasets are considered, therefore we indicate in such cases
the particular subset used in each reference.

A first observation evidences the already mentioned simpler GC problem
enclosed in LFW. No matter the experimental protocol used, the achieved
accuracies are significantly larger. As mentioned above, the fact that GROUPS
is currently the most challenging scenario, is a solid argument to convince us
to focus on this particular dataset. Among the different experimental protocols
followed by the research community for GROUPS, see Table 1, one of them
has been used by different authors as it is reproducible. This experimental
protocol was firstly described in Dago et al. [15], and it is adopted below for
comparison purposes.

In their work, Dago et al. [15] presented results for LFW and GROUPS
evaluating the use of LBP and Gabor features classifying with LDA or SVM.
They reported similar accuracies for both features, achieving an accuracy of
86.61% for GROUPS, and 94.01% for LFW. Later, Bekios et al. [5] focused on
linear classification combining LDA/PCA features with a Bayesian classifier,
integrating gender, age and pose information. They reported an accuracy of
80.5% in GROUPS.

More recently, Shan [42] combined LBP features with a SVM classifier to
obtain an accuracy of 94.8% in LFW. Tapia et al. [45] fused different LBP-
based features, scales and mutual information measures, reporting for LFW
an accuracy of 98%. A similar accuracy has been achieved by Ren and Li [40]
and Erdogmus et al. [18]. The former combining two types of local descriptors
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(gradient features and Gabor wavelets), and a linear SVM. The latter with
LBP -based features. High GC accuracy has also been achieved for LFW mak-
ing use of an independent training dataset. Jia and Cristianini [28] trained
with four million images, achieving 96.9%. More recently Antipov et al. [3]
reported 97.1% assembling three Convolutional Neural Networks (CNNs).

Chen and Gallagher [13] built a facial appearance representation based on
the 100 most common names in USA. The voting of the top five names is
used to assign a gender to a test image. The achieved accuracy for GROUPS
reaches 90.4%. Han and Jain [23] employed biologically inspired features (BIF)
and a SVM classifier reaching for GROUPS and LFW respectively 87.14% and
95.4%. Slighly higher accuracy, 91.4%, has been achieved by Fazl-Ersi et al. [19]
combining LBP, SIFT and color histograms after a feature selection stage.

CNNs [32] have recently reported outstanding results in different Com-
puter Vision problems as image classification [30] and face recognition [43].
An advantage offered by CNN is the reduction of time required for feature
selection, as this task is now responsibility of the CNN training process.

Considering these facts, some authors have started to evaluate CNN in
GC. We mentioned above the work by Antipov et al. for LFW [3]. However,
there is also an interest in combining CNN outputs and local descriptors for
GC [47,36]. In particular the proposal by Mansanet et al. [36] weights local
patches and Deep Neural Networks (DNN) outputs achieving single dataset
GC for LFW and GROUPS respectively of 96.25% and 90.58%.

For comparison purposes we will adopt below the deep CNN design by [33].
In their work the authors made use of three convolutional layers and two fully
connected layers for GC and age estimation, creating respectively GenderNet
and AgeNet, that were trained and evaluated on the Adience dataset.

3 Proposal

Based on our experience, we keep on exploring the use of multiple descriptors
applied to different regions of interest for the GC problem. Our baseline is
given by our recent results that compete, as far as we know, the state of the
art in facial based GC in the wild [8,9,11], enclosing a comparison with CNN
approaches.

Our recent achievement of better accuracies by the fusion of features densely
extracted from the face pattern, its local context and some relevant inner facial
areas, leads us to revisit the analysis of the human visual system for the GC
problem using bubbles [22]. In their work, the authors conclude that both the
ocular and the mouth areas are significantly discriminant for this particular
task to the human system.

Certainly, the use of patches or components is not a novel idea. Indeed,
we would like to mention the work by Heisele et al. [24], that made use of
two layers of classifiers, being the second the combination of the first layer
scores. That approach obtained better results than just using global features.
Indeed, our previous study of the integration of the periocular area [11] with
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holistic features has evidenced an improvement of the GC performance up to
2 percentage points.

3.1 Fusion strategies

Considering the combination of different descriptors and areas of interest, we
may select the fusion strategy that better suits our needs, i.e. fusion either at
feature, matching score, or decision level. On one side, feature level fusion will
certainly keep more information, but increasing the problem dimensionality
will also affect negatively the computational cost. On the completely other
side, decision level fusion likely avoids the use of much valuable information.
We have therefore adopted a score level fusion (SLF) approach with the aim
at achieving the best compromise between speed and performance.

Similarly to Heisele et al., we therefore design a two layered architecture.
However, we do not restrict to inner facial regions but also integrate features
extracted from the whole facial pattern, and even including its local context.
To avoid redundancy and reduce processing cost, a single grid setup is se-
lected for each descriptor and pattern. This selection is done choosing the best
performing grid in a previous reduced experiment.

Each first layer expert in the architecture is built using a SVM classifier
with RBF kernel [46]. Its output is a score indicating the proximity of the
sample to the border between both classes. The second layer fuses those scores
feeding a single second layer SVM classifier.

Summarizing, different features are extracted from the selected areas of
interest in the first layer, to apply a score level fusion (SLF) in the second
step. SLF is adopted considering the benefits involved in managing smaller
feature vectors, and the possibility of parallel computation.

3.2 Regions of interest

The different regions of interest considered are illustrated in Fig. 2: head and
shoulders (HS), face (F), periocular (P), and mouth (M) areas. All those pat-
terns are automatically cropped from the original head and shoulders pattern
(with a dimension of 155 × 159 pixels where the inter-eye distance has been
normalized to 26 pixels). A previous image normalization process is guided by
the eyes, that encloses rotation, scaling and translation to fix the eye locations.

3.3 Descriptors

As features, we do not define any new descriptor, but evaluate a collection of
local descriptors. Local descriptors are currently being extensively applied for
facial analysis, making use of a histogram representation to reduce the feature
vector dimension. However, typically a grid of homogeneous cells is defined
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Fig. 2 GROUPS sample presenting the regions of interest considered below, respectively
and starting from the left: head and shoulders (HS) (64×64 pixels), face (F) (59×65 pixels),
periocular (P) (49 × 19 pixels), and mouth (M) (37 × 31 pixels).

to avoid the loss of spatial information produced by a single based histogram
representation [1].

A grid resolution is defined by its number of horizontal and vertical cells,
respectively cx and cy. Therefore, the pattern is divided into a total of cx× cy
cells. For a given descriptor, a histogram is computed in each cell, hi, where
the bins indicate the number of occurrences of the different codes. The final
feature vector, x, is composed concatenating the respective cx×cy histograms,
i.e. x = {h1, h2, ..., hcx×cy}.

Summarizing, we evaluate each pattern for each descriptor with a particular
range of grid configuration. For all the patterns we have covered the range
cx ∈ [1, 8] and cy ∈ [1, 8]. For the periocular pattern, P, due to its narrower
height, we have restricted the study to the range cx ∈ [1, 8] and cy ∈ [1, 6].
That makes respectively a total of 64 and 48 variants per descriptor. The
best grid resolution for each particular local descriptor is later used for fusion
strategies. As descriptors we have considered the well known HOG and LBP,
and some alternatives, including different LBP variants. We include a brief
description, with some additional details for those less commonly used for
GC:

– Histogram of Oriented Gradients (HOG) [16]. Based on the gradient ori-
entations in each image cell. As mentioned above, and similarly to the
whole collection of descriptors, an image is represented by the concatena-
tion of the respective cell histograms. Illumination normalization is applied
for each cell histogram, considering its neighborhood, known as block. We
have adopted the implementation by [35] that considers blocks of 2 × 2
cells, and 9 bin histograms.

– Local Binary Patterns (LBP) and uniform Local Binary Patterns (LBPu2) [1].
LBP is a robust texture descriptor that encodes a pixel attending to whether
its gray value is greater or not each of its neighbors, composing a binary
code. Its generalized definition for an arbitrary circular neighborhoods of
radius R with P neighbors is:

LBPP,R =

P−1∑
p=0

s(gp − gc)2p (1)
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where, gc is the gray level of the central pixel and gp (with p = 0, 1, · · · , P−
1) are the values of its P neighbors. The function s(x) is defined as:

s(x) =

{
1, x ≥ 0
0, x < 0

(2)

LBPu2 reduces the codes dictionary observing those codes more common
in texture images.

– Local Gradient Patterns (LGP) [29]. As an alternative to the LBP defini-
tion, LGP descriptor makes use of the neighborhood gradient to encode the
image pixel. The gradient is computed as the absolute value of intensity
difference between the central pixel and each of its neighborhood pixels.
Similarly to LBP, its definition for an arbitrary circular neighborhoods of
radius R with P neighbors:

LGPP,R =

P−1∑
p=0

s(gp − ḡ)2p (3)

where, ḡ is the threshold value, commonly the gradient mean, and gp
(p = 0, 1, · · · , P − 1) are the gradient values of the P neighbors of the
central pixel as function s(x) is defined in Eq. 3.3.

– Local Ternary Patterns (LTP) [44]. Compared to LBP, LTP considers three
possible relations instead of two obtaining a ternary code. In fact, an in-
tensity range, ±t, is defined around the gray level gc of the central pixel
Gray levels within that range are quantized to 0, while those below gc − t
to −1, and those above gc + t to 1. In its definition, the function s(x) is:

s(x) =

 1, x ≥ gc + t
0, |x− gc| < t
−1, x ≤ gc − t

(4)

Theoretically, LTP is more robust to noise. The resulting ternary may be
split into its positive and negative parts (below LTPhigh and LTPlow) that
can be used as separate descriptors.

– Local Salient Patterns (LSP) [12]. This LBP alternative focuses on the
largest differences computed within the pixel neighborhood. This is done
to remove noise influence. The basic idea is to obtain the pair of neighbor
indexes (pdiffmax, pdiffmin) indicating respectively the maximum and min-
imum differences with the central value. Considering a 3×3 neighborhood,
five different variants are evaluated.

– LSP0 refers to the gray level difference of each pixel with respect to the
window central pixel.
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– LSP1 computes the difference of each pixel with respect to the following
one in the circular neighborhood.

– LSP2 computes for each pi in the neighborhood, the (circular) value
pi + pi+2 − 2pi+1

– LSP01 merges the results of LSP0 and LSP1.
– LSP012 concatenates the results of all three LSPn.

– Weber Local Descriptor (WLD) [14]. WLD also encodes differences of pixel
intensity within a local neighborhood comprising differential excitation and
orientation. In this sense, WLD is based on Weber’s Law stating that
human perception of a pattern depends both on the change of a stimulus
and also on its original intensity.

– Local Phase Quantization (LPQ) [39]. Insensitive to centrally symmet-
ric blur, it is based on the blur invariance property of the Fourier phase
spectrum. In this sense, this descriptor is computed using the short-term
Fourier transform (STFT) within the neighborhood.

– Intensity based Local Binary Patterns (NILBP) [34]. This LBP variant
focuses on the reduction of the LBP oversimplification of local structure.
This is done computing the difference of each neighborhood pixel with the
neighborhood mean, µ, instead of the central pixel gray value.

– Local Oriented Statistics Information Booster (LOSIB) [21]. Texture en-
hancer based on LBP, that computes the local oriented statistical informa-
tion in the whole cell. This is done first computing the intensity differences
in the 3× 3 neighborhood as follows:

dk(xc, yc) = |gk − gc| (5)

being k = 0, 1, ..., P − 1 and P the pixel neighbors. LOSIB computes the
mean of all differences along the p orientations for the m× n cell pixels:

νk =

∑m
xc=1

∑n
yc=1 dk(xc, yc)

m · n
(6)

Each cell is described in terms of P mean values, i.e. {ν0, ν2, ..., νp−1}.

4 Experiments and results

We adopt the Dago’s experimental protocol, that defines a 5-fold cross val-
idation for GROUPS. The protocol reduces the original GROUPS dataset,
including only faces with an inter-eye distance larger than 20 pixels, making
a total of about 14, 000 samples. We remind the reader that those faces are
then normalized to inter-eye distance of 26 pixels before extracting the studied
patterns, see Fig. 2.

Firstly, the study focuses on each pattern (F, HS, P and M) individually,
analyzing the optimal descriptor grid setup for their resolution. Observe that
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only the HS pattern is down-sampled to 64× 64 pixels to make it more man-
ageable. Secondly, fusion strategies are evaluated, initially considering a single
pattern, to later combine multiple descriptors and patterns. We summarize
the experimental steps as follows:

1. Explore grid resolutions for each particular pattern and feature in the first
Dago’s fold.

2. Evaluate the fusion of descriptors for a given pattern
3. Evaluate the fusion of descriptors extracted from F and P.
4. Evaluate the fusion of descriptors extracted from F and M.
5. Evaluate the fusion of descriptors extracted from F, P and M.
6. Evaluate the fusion of descriptors extracted from F and HS
7. Evaluate the fusion of descriptors extracted from F, HS and P.
8. Evaluate the fusion of descriptors extracted from F, HS and M.
9. Evaluate the fusion of descriptors extracted from F, HS, P and M.

10. Evaluate GC with available CNN based on the HS pattern.

4.1 Single descriptor and pattern

We present in first place the results achieved making use of features extracted
only from each individual pattern. Table 2 summarizes the accuracies achieved
for the first Dago’s fold using the whole collection of descriptors and variants.
The table includes only the best grid configuration accuracy for each descriptor
and pattern.

As expected both F and HS reported the highest numbers, respectively over
87% and 85%. For F that accuracy was achieved using HOG, while a group of
other descriptors reported over 86%. Considering HS, there are indeed at least
7 descriptors with an accuracy larger than 85%. The leader is LBPu2 but also
HOG, WLD, NILBP and some LSP variants are rather close.

Observing the other patterns, i.e. P and M, it is evident that their ac-
curacies are significantly worse than those reported by recent face based GC
systems.

The addition of a larger collection of local descriptors introduces some
slight differences in best accuracies with precedent results. Compared to our
previous work [10], where P and M were analyzed, the P pattern gets the best
accuracy using LSP012 with 81.77%, slightly better than using HOG. For M
pattern HOG keeps being the leader, followed by WLD. The newer results for
F and HS did not bring any improvement in the overall best accuracy. In terms
of accuracy, the patterns may be sorted in descending order as F, HS, P and
M.

Finally, we would like to make the reader observe a single descriptor such
as HOG. The optimal selected grid evidences that for each pattern the cells
are covering different extension over the facial pattern, suggesting indeed a
multi scale analysis. Certainly, the optimal grids selected for P and M, cover
some areas with larger detail, that is quite unpractical for the whole pattern,
as the feature vector dimension would increase significantly.
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Table 2 Summary per pattern using a single descriptor. For each pattern and descriptor,
the number of features (#), mean processing time per image (milliseconds for a Matlab im-
plementation) and grid resolution are presented added to the accuracy. Achieved accuracies
are highlighted, the darker the color, the worse the accuracy.

Descriptors
F HS

# (grid) t Acc. # (grid) t Acc.

HOG 576 (8 × 8) 9 87.48 504 (7 × 8) 9 85.62
LBPu2 1770 (6 × 5) 71 86.78 1770 (6 × 5) 75 85.75
LBP 3072 (3 × 4) 96 82.90 3840 (3 × 5) 138 82.07
LGP 14436 (7 × 8) 254 85.31 16384 (8 × 8) 316 83.19
LPQ 1024 (1 × 4) 21 85.14 3072 (4 × 3) 56 84.14
WLD 6400 (5 × 5) 356 86.60 4608 (3 × 6) 316 85.40

LOSIB 448 (8 × 7) 7 83.00 384 (6 × 8) 6 82.64
NILBP 2478 (7 × 6) 84 86.20 2832 (8 × 6) 96 85.66
LSP0 1710 (6 × 5) 107 85.70 1995 (7 × 5) 120 85.45
LSP1 2394 (6 × 7) 117 85.98 1710 (6 × 5) 93 85.13
LSP2 2280 (5 × 8) 111 83.64 2052 (6 × 6) 104 84.47
LSP01 2736 (6 × 4) 149 86.58 2280 (4 × 5) 130 85.65
LSP012 2052 (3 × 4) 122 86.28 3078 (6 × 3) 162 84.64

LTPhigh 3072 (3 × 4) 103 86.06 3072 (4 × 3) 118 84.16
LTPlow 2048 (2 × 4) 69 85.34 3072 (4 × 3) 119 83.52

P M
# (grid) t Acc. # (grid) t Acc.

HOG 576 (7 × 6) 14 81.61 378 (8 × 8) 8 80.50
LBPu2 1475 (8 × 3) 49 79.60 1416 (5 × 5) 41 76.76
LBP 5120 (6 × 3) 115 78.30 4608 (4 × 5) 93 75.06
LGP 10752 (6 × 6) 179 77.09 9216 (7 × 6) 138 76.66
LPQ 1024 (2 × 2) 23 77.12 1024 (2 × 2) 17 77.47
WLD 5120 (6 × 3) 177 81.03 4608 (4 × 5) 148 78.42

LOSIB 336 (7 × 6) 7 76.09 336 (7 × 6) 7 72.79
NILBP 1770 (7 × 3) 51 78.67 1239 (6 × 5) 33 77.10
LSP0 1425 (8 × 3) 49 78.64 1368 (5 × 5) 40 76.59
LSP1 1425 (7 × 3) 48 78.77 1197 (5 × 5) 36 76.92
LSP2 1710 (7 × 3) 62 76.72 1197 (6 × 5) 35 73.05
LSP01 2280 (6 × 2) 79 80.49 1368 (5 × 4) 45 78.30
LSP012 2565 (8 × 2) 93 81.77 2736 (5 × 3) 85 78.47

LTPhigh 3072 (6 × 2) 75 80.25 3072 (6 × 2) 6 77.90
LTPlow 7168 (7 × 2) 159 80.36 3584 (4 × 7) 77 77.90

Table 3 Summary per pattern fusing descriptors of a single pattern.

Pattern Acc. Descriptors
F 89.22 HOG + LGP + LPQ

HS 88.68 LBPu2 + WLD + LSP01

P 83.41 WLD + LSP012 + LTPhigh

M 81.58 HOG + LSP0 + LSP1
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4.2 Multiple descriptors and single pattern

Considering SLF, we first evaluate the combination of multiple descriptors for
a single pattern. However, we have limited the number of descriptors com-
bined to a maximum of three to reduce the search space, as for each pattern
there are 215 possible combinations. Table 3 presents the best scores achieved
combining multiple descriptors per pattern after computing the mean for the
5-folds, varying the cost and gamma parameters respectively within the in-
tervals C = [0.5, 5] and gamma = [0.04, 0.15]. Again F and HS are clearly
reporting the highest accuracies, rather close to those present in recent lit-
erature, but this time the difference among them is reduced, even when the
facial pattern presents a remarkable lower resolution within the HS pattern.
They respectively have increased roughly 1.74% (from 87.48% to 89.22%) and
2.93% (from 85.75% to 88.68%) percentage points. P and M also increased
their respective accuracies combining descriptors, but they are still far from
the scores achieved by F and HS.

Observe that the best combinations do not necessarily make use of the
same descriptors, and those combined are not necessarily the individually best
ones. These results suggest the complementary information contained in some
descriptors for this problem. However, some descriptors appear more often
(HOG, WLD and LSP variants).

4.3 Multiple descriptors and patterns

The last SLF experiment evaluates the combination of multiple descriptors and
patterns. Certainly, the analysis of all possible combinations is far from being
tractable, once more we therefore have limited the space search. Observing
their respective individual rates and presence in the previous section best
combinations, for face (F) only HOG and LBPu2 are considered; for head and
shoulders (HS) HOG, LBPu2 and WLD; for periocular (P) HOG, LBPu2, LGP,
LPQ, WLD, LSP012, LTPlow and LTPhigh; and for mouth (M) HOG, WLD,
LSP0 and LSP1. Additionally, no more than three descriptors per pattern are
combined.

Table 4 summarizes the results. Similarly to the previous section, the
reported results correspond to the 5-folds mean highest accuracy achieved,
varying the cost and gamma parameters respectively within the intervals
C = [0.5, 5] and gamma = [0.04, 0.15]. These results are compared with a
holistic approach with similar accuracy to the recent literature (F+HS), and
our previous results integrating ocular features.

The combination of all patterns reaches an accuracy over 94%. Compared
to Table 1 where no major attention was given to the periocular or mouth ar-
eas, the accuracy is increased more than 2.4 percentage points, and the error
reduction is almost 30%. This combination integrates in the first layer 10 de-
scriptors. Among them the slowest is HS-WLD requiring 316 msec. per image.
Even when each descriptors may be computed in parallel, when processing
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Table 4 Mean accuracies (in brackets female/male) for Dago’s protocol with SLF based on
the face (F), head and shoulders (HS), periocular (P) and mouth (M) areas. The first part
presents results for a single pattern, the second combining patterns and descriptors, and the
last part includes recent literature and CNN results for comparison purposes. Each result is
associated with the pattern and features fused.

Pattern(s) Approach Descriptors Acc.

F
Single F-HOG

87.48
(87.45/87.50)

SLF
F-HOG + F-LGP 89.22

F-LPQ (89.22/89.21)

HS
Single HS-LBPu2 85.75

(84.53/87.01)

SLF
HS-LBPu2 + HS-WLD 88.68

HS-LSP01 (88.79/88.57

P
Single P-LSP012

81.77
(81.08/82.47)

SLF
P-WLD + P-LSP012 83.41

P-LTPhigh (82.68/81.53)

M
Single M-HOG

80.55
(80.73/80.37)

SLF
M-HOG + M-LSP0 81.58

M-LSP1 (78.99/83.15)

F+P SLF
F-HOG + F-LBPu2 91.22
P-HOG + P-LOSIB (91.89/90.53)

P-LPQ

F+M SLF
F-HOG + F-LBPu2 90.46
M-HOG + M-LSP1 (90.59/90.33)

F+P+M SLF

F-HOG + F-LBPu2

P-HOG + P-LPQ 92.22
P-LBPu2 (92.46/91.98)

M-HOG + M-LSP1

F+HS SLF
F-HOG + F-LBPu2 91.12
F-LGP + HS-HOG (91.11/91.13)

HS-LBPu2+ HS-WLD

F+HS+P
SLF

F-HOG + F-LBPu2 93.54
HS-LBPu2 + HS-WLD (93.78/93.29)
P-HOG + P-LOSIB

F+HS+M SLF

F-HOG + F-LBPu2

HS-LBPu2 93.40
HS-WLD + M-HOG (93.53/93.26)
M-LBPu2 + M-WLD

F+HS+P+M SLF

F-HOG + F-LBPu2

HS-HOG + HS-LBPu2 94.04
HS-WLD+ P-HOG (94.30/93.78)
P-LPQ + P-LOSIB
M-HOG + M-LSP1

F+HS SLF [9]
F-HOG + F-LBPu2

91.6
HS-HOG F-LOSIB

F+HS+P+M SLF [10]

F-HOG + F-LBPu2

93.22
HS-HOG + P-HOG

P-LBPu2

M-HOG + M-WLD

F+HS+P SLF [11]
F-HOG + F-LBPu2

92.46HS-HOG + P-HOG
P-LBPu2 + P-LOSIB

HS ImageNet [30] fc6 87.98
HS GenderNet [33] - 80.42

HS (159 × 155)
GenderNet [33] -

92.89trained with GROUPS -
Face (60 × 60) Weighted combination [36] Local-DNN 90.58

Face Pool of features [19] SIFT, LBP, Color histogram 91.59
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cost is a restriction slow descriptors may be avoided during the search process
of the best combination.

Observing the accuracies and a relevant subset of the corresponding ROC
curves in Fig. 3 the proposal reports the best AUC. Indeed, the fusion of F
and HS, respectively with P or M (but not both) reports quite similar results.
Both are indeed better that our previous analysis with a reduced collection of
local descriptors combining both patterns [10].

A final comment may be given observing the reported accuracy per class in
Table 4. The SLF of multiple descriptors and patterns, reports slightly better
accuracy for the female class in most cases compared to single pattern results.

4.4 Convolutional Neural Networks

As already mentioned, CNNs [32] have achieved very high performance score
in many Computer Vision problems as image classification [30]. According to
our knowledge, they have rarely been applied to GROUPS for GC. We have
evaluated both a general (Imagenet) and a specifically trained (GenderNet)
CNN using our full HS pattern (159× 155 pixels).

Due to the CNN standard structure, stacked convolutional layers followed
by one or more fully connected layer that acts as MLP classifier, they can be
considered as feature extractors with the resulting features as the fully con-
nected layer output. In this sense, the output of the fc6 layer of the pretrained
Imagenet [30] has been considered as a vector of 4096 features to feed a SVM
classifier (RBF kernel, C= 5, gamma=0.06). The results of this approach are
included in the bottom part of Table 4. The achieved accuracy of 87.98%
reaches similar numbers to the best single descriptors results obtained for F
and HS, beating any solution exclusively based on P or M.

On the other hand, GenderNet is a CNN proposed by [33] with 3 convo-
lutional layers and 2 fully connected layers trained with the dataset Adience
benchmark where the authors obtained the best results till then. This specif-
ically trained CNN has been used as an end-to-end classifier. The results are
shown in Table 4. The accuracy, 80.42%, is the lowest of the compared ap-
proaches, evidencing the difficulties of GROUPS. When GenderNet is trained
with GROUPS, the achieved accuracy increases up to 92.89%, beating the
results by Mansanet et al. [36] but still lower than our proposal including
multiple descriptors and regions of interest.

5 Conclusions

This paper explores the benefits of combining holistic features with features
extracted from specific inner facial regions in the context of GC. For that
purpose, we have extracted features from the whole facial pattern, its local
context, and two inner facial regions of great relevance for the human visual
system: the ocular and mouth areas. In fact, this approach consists in extract-
ing features at different resolutions from those specific facial areas.
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Fig. 3 ROC curves using Dago’s protocol. Comparison of state-of-the-art classification
based on F and HS, with the proposed fusion alternatives considering HS and F features
respectively with P, M and both.

In relation to our previous work, we have extended the collection of local
descriptors studied. The achieved results report a significant improvement in
terms of accuracy and classification error reduction, when descriptors from
multiple areas are fused by means of score level strategies for this particu-
lar problem. This fusion strategy is well suited to reduce the feature vector
dimension and allow parallel computation. This approach is also compared
with CNN implementations, ImageNet and GenderNet, suggesting that GC
solutions based on hand crafted features may still compete with deep-CNN.

Summarizing, GC error is remarkably reduced if added to facial informa-
tion, features are specifically extracted from the periocular and mouth areas.
Both CNN and hand crafted features based approaches based exclusively on
holistic patterns report accuracies up to 92%. However, the multiscale pro-
posal fusion of descriptors and areas of interest reach an accuracy over 94%
for GROUPS. These results reduce significantly the performance gap compared
to GC on controlled datasets.
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