Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/16114
Título: | An evolutive approach for smile recognition in video sequences | Autores/as: | Freire-Obregón, David Castrillón-Santana, Modesto |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Facial expression Smile detection LBP PCA SVM |
Fecha de publicación: | 2015 | Publicación seriada: | International Journal of Pattern Recognition and Artificial Intelligence | Resumen: | Facial expression recognition is one of the most challenging research areas in the image recognition ¯eld and has been actively studied since the 70''s. For instance, smile recognition has been studied due to the fact that it is considered an important facial expression in human communication, it is therefore likely useful for human–machine interaction. Moreover, if a smile can be detected and also its intensity estimated, it will raise the possibility of new applications in the future We are talking about quantifying the emotion at low computation cost and high accuracy. For this aim, we have used a new support vector machine (SVM)-based approach that integrates a weighted combination of local binary patterns (LBPs)-and principal component analysis (PCA)-based approaches. Furthermore, we construct this smile detector considering the evolution of the emotion along its natural life cycle. As a consequence, we achieved both low computation cost and high performance with video sequences. |
URI: | http://hdl.handle.net/10553/16114 | ISSN: | 0218-0014 | DOI: | 10.1142/S0218001415500068 | Fuente: | International Journal of Pattern Recognition and Artificial Intelligence[ISSN 0218-0014],v. 29 (1550006) |
Colección: | Artículos |
Citas SCOPUSTM
5
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
4
actualizado el 17-nov-2024
Visitas
117
actualizado el 20-jul-2024
Descargas
248
actualizado el 20-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Este elemento está sujeto a una licencia Licencia Creative Commons