Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/16114
Campo DC Valoridioma
dc.contributor.authorFreire-Obregón, Daviden_US
dc.contributor.authorCastrillón-Santana, Modestoen_US
dc.date.accessioned2016-03-14T13:45:23Z-
dc.date.accessioned2018-02-21T14:16:26Z-
dc.date.available2016-03-14T13:45:23Z-
dc.date.available2018-02-21T14:16:26Z-
dc.date.issued2015en_US
dc.identifier.issn0218-0014en_US
dc.identifier.urihttp://hdl.handle.net/10553/16114-
dc.description.abstractFacial expression recognition is one of the most challenging research areas in the image recognition ¯eld and has been actively studied since the 70''s. For instance, smile recognition has been studied due to the fact that it is considered an important facial expression in human communication, it is therefore likely useful for human–machine interaction. Moreover, if a smile can be detected and also its intensity estimated, it will raise the possibility of new applications in the futurees
dc.description.abstractWe are talking about quantifying the emotion at low computation cost and high accuracy. For this aim, we have used a new support vector machine (SVM)-based approach that integrates a weighted combination of local binary patterns (LBPs)-and principal component analysis (PCA)-based approaches. Furthermore, we construct this smile detector considering the evolution of the emotion along its natural life cycle. As a consequence, we achieved both low computation cost and high performance with video sequences.es
dc.languageengen_US
dc.relation.ispartofInternational Journal of Pattern Recognition and Artificial Intelligenceen_US
dc.sourceInternational Journal of Pattern Recognition and Artificial Intelligence[ISSN 0218-0014],v. 29 (1550006)en_US
dc.subject120304 Inteligencia artificiales
dc.subject.otherFacial expressiones
dc.subject.otherSmile detectiones
dc.subject.otherLBPes
dc.subject.otherPCAes
dc.subject.otherSVMes
dc.titleAn evolutive approach for smile recognition in video sequencesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticlees
dc.typeArticlees
dc.identifier.doi10.1142/S0218001415500068
dc.identifier.scopus84929310887-
dc.contributor.authorscopusid23396618800-
dc.contributor.authorscopusid22333278500-
dc.identifier.absysnet720750-
dc.identifier.crisid12988;2806-
dc.identifier.crisid12988;2806-
dc.relation.volume29-
dc.investigacionIngeniería y Arquitecturaes
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.type2Artículoen_US
dc.date.coverdateEnero 2015
dc.identifier.ulpgces
dc.description.sjr0,406
dc.description.jcr0,915
dc.description.sjrqQ3
dc.description.jcrqQ3
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Colección:Artículos
miniatura
Preimpresión del artículo
Adobe PDF (430,75 kB)
Vista resumida

Citas SCOPUSTM   

5
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 17-nov-2024

Visitas

117
actualizado el 20-jul-2024

Descargas

248
actualizado el 20-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons