Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/155615
Título: Scalable and low-power edge architecture with Wi-Fi HaLow and on-device spectrograms generation for flexible urban bioacoustics monitoring
Autores/as: Delgado-Rajó, Francisco A. 
Travieso-González, Carlos M. 
Hernández López, Ruymán 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Birds' Song Recognition
Edge Computing
Low-Power Wide-Area Networks
Biodiversity
Internet Of Things, et al.
Fecha de publicación: 2026
Publicación seriada: Internet of Things (Netherlands) 
Resumen: Urban biodiversity monitoring in smart cities requires scalable and efficient computing architectures capable of handling real-time, distributed sensing tasks. This paper proposes a low-power edge computing and Internet of Things (IoT) framework that enables on-device acoustic detection and classification of bird species, serving as bioindicators of ecosystem health. The architecture leverages lightweight convolutional neural networks (CNNs) deployed on energy-efficient sensor nodes, significantly reducing communication overhead by transmitting only detection events and compact spectrogram data. A key contribution is the automatic generation of Mel-spectrograms at the edge, which supports the continuous creation of training datasets and iterative neural network refinement without manual preprocessing. The proposed system incorporates dual Wi-Fi and WiFi HaLow connectivity, providing adaptable long-range, low-power communication for heterogeneous urban environments. Field experiments validate the framework's scalability and effectiveness, demonstrating robust detection of both native and invasive species. By combining distributed intelligence, resource-aware computation, and flexible networking, the system offers a practical edge-IoT solution for large-scale, real-time environmental monitoring in smart city contexts.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/155615
ISSN: 2543-1536
DOI: 10.1016/j.iot.2025.101864
Fuente: Internet Of Things[ISSN 2543-1536],v. 36, (Marzo 2026)
Colección:Artículos
Adobe PDF (8,73 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.