Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/136582
Título: | Functional equation arising in behavioral sciences: solvability and collocation scheme in Hölder spaces | Autores/as: | Caballero, Josefa Okrasinska-Plociniczak, Hanna Plociniczak, Lukasz Sadarangani, Kishin |
Clasificación UNESCO: | 12 Matemáticas | Palabras clave: | Stability Functional Equation Nonlocal Equation H & Ouml;Lder Continuity Collocation Method, et al. |
Fecha de publicación: | 2025 | Publicación seriada: | Applied Numerical Mathematics | Resumen: | We consider a generalization of a functional equation that models the learning process in various animal species. The equation can be considered nonlocal, as it is built with a convex combination of the unknown function evaluated at mixed arguments. This makes the equation contain two terms with vanishing delays. We prove the existence and uniqueness of the solution in the H & ouml;lder space which is a natural function space to consider. In the second part of the paper, we devise an efficient numerical collocation method used to find an approximation to the main problem. We prove the convergence of the scheme and, in passing, several properties of the linear interpolation operator acting on the H & ouml;lder space. Numerical simulations verify that the order of convergence of the method (measured in the supremum norm) is equal to the order of H & ouml;lder continuity. | URI: | http://hdl.handle.net/10553/136582 | ISSN: | 0168-9274 | DOI: | 10.1016/j.apnum.2025.02.010 | Fuente: | Applied Numerical Mathematics[ISSN 0168-9274],v. 212, p. 268-282, (Junio 2025) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.