Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136582
Título: Functional equation arising in behavioral sciences: solvability and collocation scheme in Hölder spaces
Autores/as: Caballero, Josefa 
Okrasinska-Plociniczak, Hanna
Plociniczak, Lukasz
Sadarangani, Kishin 
Clasificación UNESCO: 12 Matemáticas
Palabras clave: Stability
Functional Equation
Nonlocal Equation
H & Ouml;Lder Continuity
Collocation Method, et al.
Fecha de publicación: 2025
Publicación seriada: Applied Numerical Mathematics 
Resumen: We consider a generalization of a functional equation that models the learning process in various animal species. The equation can be considered nonlocal, as it is built with a convex combination of the unknown function evaluated at mixed arguments. This makes the equation contain two terms with vanishing delays. We prove the existence and uniqueness of the solution in the H & ouml;lder space which is a natural function space to consider. In the second part of the paper, we devise an efficient numerical collocation method used to find an approximation to the main problem. We prove the convergence of the scheme and, in passing, several properties of the linear interpolation operator acting on the H & ouml;lder space. Numerical simulations verify that the order of convergence of the method (measured in the supremum norm) is equal to the order of H & ouml;lder continuity.
URI: http://hdl.handle.net/10553/136582
ISSN: 0168-9274
DOI: 10.1016/j.apnum.2025.02.010
Fuente: Applied Numerical Mathematics[ISSN 0168-9274],v. 212, p. 268-282, (Junio 2025)
Colección:Artículos
Adobe PDF (546,83 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.