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Abstract

We consider a generalization of a functional equation that models the learning process in
various animal species. The equation can be considered nonlocal, as it is built with a convex
combination of the unknown function evaluated at mixed arguments. This makes the equation
contain two terms with vanishing delays. We prove the existence and uniqueness of the solution
in the Hölder space which is a natural function space to consider. In the second part of the
paper, we devise an efficient numerical collocation method used to find an approximation to the
main problem. We prove the convergence of the scheme and, in passing, several properties of
the linear interpolation operator acting on the Hölder space. Numerical simulations verify that
the order of convergence of the method (measured in the supremum norm) is equal to the order
of Hölder continuity.
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1 Introduction
Since the middle of the twentieth century, psychologists have considered mathematics to be a useful
tool in the learning process [6]. The main motivation for our work comes from the results of other
authors that were published in [17, 18], where a model describing the learning process of paradise
fish was analyzed. This, in turn, is based on empirical research described in [8]. In the experiment,
the fish were given two gates through which to swim. One of them had a higher probability that
a fish would obtain a reward. In this way, it was natural to observe that in subsequent trials the
fish preferred the more rewarding gate over the other. If t is the initial probability of choosing the
most rewarding gate, it should increase to αt + 1 − α in the next trial when the fish chooses it.
On the other hand, this probability decreases to βt when the fish chooses the least beneficial gate.
Here, 0 < α ≤ β < 1 are the learning rates. A specimen adapting the strategy of choosing the most
rewarding gate should then gain an advantage over other fish so that after many trials it learns to
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choose the correct one. If f(t) is the probability of choosing the rewarding gate after many trials
(learned behavior), the mathematical model for this has the form of a functional equation

f(t) = tf(αt+ 1− α) + (1− t)f(βt), f(0) = 0, f(1) = 1, (1)

for any t ∈ [0, 1]. Here, f : [0, 1] → R is an unknown function and 0 < α ≤ β < 1. In Theorems 5.1
and 5.2 of [17], it is proved that under the assumption that 4β < 1, there exists a unique solution to
(1) in the complete metric space CL0,1 = {f ∈ H1[0, 1] : f(0) = 0, f(1) = 1}. For example, when
α = 0, that is, the fish always chooses the unrewarding gate, by iteration we have

f(t) = tf(1) + (1− t)f(βt) = t+ (1− t)f(βt). (2)

By inspection, one can show that the solution has the form

f(t) = 1−
∞∏
n=0

(1− βnt), (3)

since, by a change of the variable n+1 7→ n, we have (1− t)f(βt) = 1− t− (1− t)
∏∞

n=0(1−βn+1t) =
1 − t −

∏∞
n=0(1 − βnt) = f(t) − t which is equivalent to (2). It is obvious that the occurrence of

analytical closed-form solutions is an exceptional phenomenon, and in practice one is forced to use
efficient numerical methods.

Mathematical analysis of (1) or similar functional equations arising in behavioral science has
been conducted in several other papers, in addition to those mentioned above. For example, in
[15] Schauder’s fixed point theorem was used to prove the existence under the assumption that the
solution can be expanded in a certain power series. On the other hand, the Banach contraction
theorem was used to show the existence and uniqueness in [13]. Further advances have been achieved
in [11, 3]. In our previous work [10] we have considered a naturally generalized version of (1) and
proved its unique solvability in the Lipschitz space by carefully choosing a closed subset and finding
a suitable contractive operator. We have also observed that Picard’s iteration, suggested by many
authors as a method of obtaining approximate solutions, is extremely demanding on computational
power. This made it difficult for practitioners to use. To remedy that, we provided some accurate
and analytical approximations.

In the present paper, we will study the following functional equation with boundary conditions

f(t) = φ(t)f(φ1(t)) + (1− φ(t))f(φ2(t)), f(0) = 0, f(1) = 1, (4)

for any t ∈ [0, 1], where f : [0, 1] → R is a unknown function. The coefficients satisfy{
φ : [0, 1] → R,
φi : [0, 1] → [0, 1], φ1(1) = 1, φ2(0) = 0.

(5)

Note that this setting generalizes (1) in a natural way in which all coefficients retain the essential
properties of those in (1). In the following, we prove that the solution to the above problem is unique
and belongs to the space of Hölder function. As will be clear from the presentation, the choice of the
function space is crucial for the relevant operator to become a contraction. Hölder space provides
minimal regularity, apart from the lone continuity, to grant a unique solution. Previously, we were
able to obtain an analogous result for Lipschitz functions [10]. However, in the present work we show
that it is possible to relax the regularity of the function space even more and still have a unique
solution. Moreover, in the second part of the paper, we construct an efficient numerical scheme
based on the collocation method and prove its convergence along with the order. This approach of
finding approximate solutions is far superior to Picard’s iteration, which was reported and verified
in [9]. As a general rule, the convergence, both in practice and in the proof of it, is easier to obtain
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when sufficient regularity is available. The favorable case for piecewise linear collocation is having a
twice-differentiable solution. For Hölder continuous functions showing that the numerical scheme is
convergent requires more refined techniques. In the following, we show how to prove this result by
using several estimates of the projection operator. These are auxiliary results, but may be interesting
on their own.

Equation (4) can be understood from several points of view. Note that the functions φ1,2 mix the
argument of the solution in a possibly nonlinear way. Therefore, the value of f in t always depends
on the values of the function at φ1(t) and φ2(t). This makes the problem nonlocal. Due to this
complication, it would be difficult to use numerical methods based on a prescribed mesh. Rather, it
is more natural to use schemes that return a function defined over the whole domain [0, 1] such as
the collocation method [4]. This mixing of arguments introduces various difficulties that have been
investigated by many authors. For example, in the paradise fish equation, the value of f at t to the
values at αt + 1 − α and βt. These can be understood as a proportional or, in general, a vanishing
delay (in contrast to the usual delay equations with terms being functions of t− τ for some τ > 0).
For example, the simplest of such problems f(t) = af(bt)+g(t) has gained considerable attention as a
prototype functional equation associated with the celebrated pantograph equation [12, 7, 19]. In [14]
existence and uniqueness of the solution has been proved along with the construction of a collocation
scheme. These results were further generalized in [5, 16] in which the convergence of the numerical
method was proved. In some sense, the equation studied by us is more complex since it involves
two independent ways of mixing arguments in a not necessarily proportional way. Furthermore, we
consider a boundary value problem rather than an initial one in which the word "delay" loses its
physical meaning. Rather, we would like to think of (4) as a nonlocal equation.

In the next section, we revise some elementary properties of Hölder spaces. Section 3 contains
our main result concerning the existence and uniqueness, while in Section 4 we construct and analyze
the collocation scheme. In Section 5 we illustrate our finding by some numerical simulations. We
close the paper with some remarks on open problems that appeared during our work.

2 Hölder space preliminaries
Before to present our main results, we will give the mathematical tools which we will use in the
present paper. This material can be found in [2]. Let [a, b] be a closed interval in R, C[a, b] denote
the space of continuous functions with real values in [a, b] equipped with the classical supremum
norm, that is, for f ∈ C[a, b], ∥f∥∞ = sup{|f(t)| : t ∈ [a, b]}. Similarly, the space of smooth
functions with k-th continuous derivatives is denoted by Ck[a, b]. Now, we define two specific subsets
of the space of continuous functions. For 0 < γ ≤ 1 fixed, Hγ[a, b] will denote the space of real
functions f : [a, b] → R such that

sup

{
|f(t)− f(s)|

|t− s|γ
: t, s ∈ [a, b], t ̸= s

}
< ∞. (6)

It is easily seen that Hγ[a, b] is a linear subspace of C[a, b] and can be normed by

∥f∥γ = |f(a)|+ sup

{
|f(t)− f(s)|

|t− s|γ
: t, s ∈ [a, b], t ̸= s

}
, (7)

for any f ∈ Hγ[a, b]. It is proved that (Hγ[a, b], ∥ · ∥γ) is a Banach space. The space Hγ[a, b] is called
the Hölder space and in the specific case γ = 1, the Lipschitz space. A closed subspace of the
Hölder space will also be of use: functions vanishing at the boundary, that is,

Hγ
0 [a, b] := {f ∈ Hγ[a, b] : f(a) = f(b) = 0}, (8)

which is a Banach space with the inherited norm ∥ · ∥γ (note that the term f(a) = 0).
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For numerical methods, we sometimes also require some more regularity and define the space of
functions of which derivatives are Hölder continuous. The following space will be useful in studying
the error of our numerical method

Hk,γ[a, b] :=

{
Hγ[a, b], k = 0,

{f : [a, b] 7→ R : f ′ ∈ Hγ[a, b]}, k = 1,
(9)

where prime denotes the derivative. The space Hk,γ
0 [a, b] is defined analogously. It is also clear how

to define Hölder spaces of higher smoothness, however, we will not need them. We can state some
simple properties of the Hölder spaces Hγ[a, b].

Lemma 1 ([1]). For f ∈ Hγ[a, b], the following inequality holds

∥f∥∞ ≤ max{1, (b− a)γ}∥f∥γ. (10)

Lemma 2 ([1]). For 0 < γ < β ≤ 1, we have

Hβ[a, b] ⊂ Hγ[a, b] ⊂ C[a, b]. (11)

Moreover, if f ∈ Hβ[a, b] then

∥f∥γ ≤ max{1, (b− a)β−γ}∥f∥β. (12)

Finally, it is known that Hγ[a, b] is a Banach algebra, and to make the paper self-contained, we
give the proof of this fact.

Lemma 3. For f, g ∈ Hγ[a, b], we have f · g ∈ Hγ[a, b].

Proof. We take t, s ∈ [a, b] with t ̸= s, and then since f, g ∈ Hγ[a, b], it follows that

|f(t)g(t)− f(s)g(s)|
|t− s|γ

≤ |f(t)g(t)− f(s)g(t)|
|t− s|γ

+
|f(s)g(t)− f(s)g(s)|

|t− s|γ

≤ |g(t)| |f(t)− f(s)|
|t− s|γ

+ |f(s)| |g(t)− g(s)|
|t− s|γ

≤ ∥g∥∞ sup

{
|f(p)− f(q)|

|p− q|γ
: p, q ∈ [a, b], p ̸= q

}
+ ∥f∥∞ sup

{
|g(p)− g(q)|

|p− q|γ
: p, q ∈ [a, b], p ̸= q

}
< ∞,

(13)

which ends the proof.

Remark 1. Taking into account the above estimate of Lemma 3, we infer that

∥f · g∥γ ≤ ∥f∥∞(∥g∥γ − |g(0)|) + ∥g∥∞(∥f∥γ − |f(0)|). (14)

From now on, we will consider the interval [a, b] = [0, 1] and the Hölder space Hγ[0, 1] for 0 <
γ ≤ 1. We proceed to prove some auxiliary results to prepare for the main result.

Lemma 4. The identity mapping I : [0, 1] → [0, 1], defined by I(t) = t, belongs to Hγ[0, 1] for
0 < γ ≤ 1.

Proof. It is clear that, for any t, s ∈ [0, 1] with t ̸= s,

|I(t)− I(s)|
|t− s|γ

=
|t− s|
|t− s|γ

= |t− s|1−γ ≤ 1, (15)

and this proves that I ∈ Hγ[0, 1].
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The following lemma is related to the composition operator in Hγ[0, 1].

Lemma 5. Suppose that f ∈ Hγ[0, 1] with 0 < γ ≤ 1 and φ : [0, 1] → [0, 1] such that φ ∈ H1[0, 1].
Then the operator defined by

Cφ(f)(t) = f(φ(t)) for t ∈ [0, 1], (16)

satisfies:

(i) Cφf ∈ Hγ[0, 1],

(ii) ∥Cφf∥γ ≤ |f(φ(0))|+ (∥f∥γ − |f(0)|) · (∥φ∥1 − |φ(0)|)γ,

(iii) under the assumption f(0) = 0, for any t ∈ [0, 1] we have

|Cφf(t)| ≤ ∥f∥γ∥φ∥γ1 . (17)

Proof. For the proof of (i) we take t, s ∈ [0, 1] with t ̸= s and estimate the following quotient

|(Cφf)(t)− (Cφf)(s)|
|t− s|γ

. (18)

In fact, taking into account that f ∈ Hγ[0, 1] and φ ∈ H1[0, 1], we have

|(Cφf)(t)− (Cφf)(s)|
|t− s|γ

=
|f(φ(t))− f(φ(s))|

|t− s|γ

≤ |f(φ(t))− f(φ(s))|
|φ(t)− φ(s)|γ

|φ(t)− φ(s)|γ

|t− s|γ
≤ ∥f∥γ∥φ∥γ1 < ∞,

(19)

which proves that Cφf ∈ Hγ[0, 1]. Next, from the definition of ∥ · ∥γ and from the estimate obtained
in (i), it further follows that

∥Cφf∥γ = |f(φ(0))|+ (∥f∥γ − |f(0)|)(∥φ∥1 − |φ(0)|)γ. (20)

which completes the proof of (ii). For the claim (iii), suppose that f(0) = 0, then

|Cφf(t)| = |f(φ(t))| = |f(φ(t))− f(0)| ≤ |f(φ(t))− f(0)|
|φ(t)|γ

|φ(t)|γ

≤ sup

{
|f(p)− f(q)|

|p− q|γ
: p, q ∈ [0, 1], p ̸= q

}
∥φ∥γ∞ ≤ ∥f∥γ∥φ∥γ1 ,

(21)

where we have used Lemma 1, specifically, ∥φ∥∞ ≤ ∥φ∥1. The proof is complete.

3 Existence and uniqueness
In this section we will prove our main result concerning the existence and uniqueness of solutions to
(4). By D0,1

γ [0, 1] we denote the following set

D0,1
γ [0, 1] = {f ∈ Hγ[0, 1] : f(0) = 0, f(1) = 1}. (22)

Note that, by Lemma 1, ∥f∥∞ ≤ ∥f∥γ. Take (fn) ⊂ D0,1
γ [0, 1] and fn

∥·∥γ−→ f with f ∈ Hγ[0, 1]. Then

fn
∥·∥∞−→ f and, therefore, (fn) converges pointwise to f , in particular fn(0) → f(0) and fn(1) → f(1).
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Hence, f ∈ D0,1
γ [0, 1], which means that D0,1

γ [0, 1] is a closed subset of Hγ[0, 1]. From this reasoning,
the pair (D0,1

γ [0, 1], d), where d is the distance given by

d(f, g) = ∥f − g∥γ, for f, g ∈ D0,1
γ [0, 1], (23)

is a complete metric space. Furthermore, let T be the operator defined on D0,1
γ [0, 1] by

(Tf)(t) = φ(t)f(φ1(t)) + (1− φ(t))f(φ2(t)), (24)

for any t ∈ [0, 1]. The following results state some fundamental properties of T acting on D0,1
γ [0, 1].

Theorem 1. Let 0 < γ ≤ 1 be. Suppose that f ∈ D0,1
γ [0, 1], φ : [0, 1] → R with φ ∈ D0,1

γ [0, 1] and
φ1, φ2 : [0, 1] → [0, 1], φ1, φ2 ∈ H1[0, 1] with φ1(1) = 1 and φ2(0) = 0. Then

(i) Tf ∈ D0,1
γ [0, 1].

(ii) ∥Tf∥γ ≤ ∥φ∥γ(2∥φ2∥γ1 + (∥φ1∥1 − φ1(0))
γ + ∥φ1∥γ)∥f∥γ.

(iii) For f, g ∈ D0,1
γ [0, 1], we have

d(Tf, Tg) ≤ 2∥φ∥γ(∥φ2∥γ1 + (∥φ1∥1 − φ1(0))
γ)d(f, g). (25)

(iv) If ∥φ∥γ(2∥φ2∥γ1+(∥φ1∥1−φ1(0))
γ+∥φ1∥γ) < 1, then the operator T given by (24) has a unique

fixed point f ⋆ in D0,1
γ [0, 1]. Moreover, given f0 ∈ D0,1

γ [0, 1] the iteration {fn} in D0,1
γ [0, 1] defined

by
fn(t) = φ(t)fn−1(φ1(t)) + (1− φ(t))fn−1(φ2(t)) (26)

for n ∈ N, converges to the unique solution f ⋆.

Proof. We start with proving (i). Notice that the operator T can be expressed by

Tf = φ · Cφ1(f) + (1− φ) · Cφ2(f), (27)

and taking into account Lemmas 3, 4 and 5, it follows that for f ∈ D0,1
γ [0, 1] ⊂ Hγ[0, 1] we have

Tf ∈ Hγ[0, 1]. Moreover, we see that

(Tf)(0) = φ(0)f(φ1(0)) + (1− φ(0))f(φ2(0)) = f(φ2(0)) = f(0) = 0 (28)

where we have used the fact that φ, f ∈ D0,1
γ [0, 1] and our assumption φ2(0) = 0. On the other hand,

since f, φ ∈ D0,1
γ [0, 1] and φ1(1) = 1, we deduce

(Tf)(1) = φ(1)f(φ1(1)) + (1− φ(1))f(φ2(1)) = f(φ1(1)) = f(1) = 1. (29)

This proves that Tf ∈ D0,1
γ [0, 1].

For the proof of (ii) we have to estimate ∥Tf∥γ for f ∈ D0,1
γ [0, 1], we take t, s ∈ [0, 1] with t ̸= s

and we have

|(Tf)(t)− (Tf)(s)|
|t− s|γ

=
1

|t− s|γ
[|φ(t)f(φ1(t)) + (1− φ(t))f(φ2(t))− φ(s)f(φ1(s))− (1− φ(s))f(φ2(s))|]

≤ 1

|t− s|γ
[|φ(t)f(φ1(t))− φ(t)f(φ1(s))| + |(1− φ(t))f(φ2(t))− (1− φ(t))f(φ2(s))|

+ |φ(t)f(φ1(s))− φ(s)f(φ1(s))|+ |(1− φ(t))f(φ2(s))− (1− φ(s))f(φ2(s))|] .
(30)
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Now, we can form the respective quotients

|(Tf)(t)− (Tf)(s)|
|t− s|γ

≤ 1

|t− s|γ

[
|φ(t)| |f(φ1(t))− f(φ1(s))|

|φ1(t)− φ1(s)|γ
|φ1(t)− φ1(s)|γ

+ |1− φ(t)| |f(φ2(t))− f(φ2(s))|
|φ2(t)− φ2(s)|γ

|φ2(t)− φ2(s)|γ

+|φ(t)− φ(s)||f(φ1(s))|+ |φ(t)− φ(s)||f(φ2(s))|]

(31)

or

|(Tf)(t)− (Tf)(s)|
|t− s|γ

≤ ∥φ∥γ
|f(φ1(t))− f(φ1(s))|

|φ1(t)− φ1(s)|γ

(
φ1(t)− φ1(s)|

|t− s|

)γ

+
|φ(t)− φ(1)|

|1− t|γ
|1− t|γ |f(φ2(t))− f(φ2(s))|

|φ2(t)− φ2(s)|γ

(
|φ2(t)− φ2(s)|

|t− s|

)γ

+
|φ(t)− φ(s)|

|t− s|γ
|f(φ1(s))|+

|φ(t)− φ(s)|
|t− s|γ

|f(φ2(s))|,

(32)

where we have used the fact that φ ∈ D0,1
γ [0, 1] and ∥φ∥∞ ≤ ∥φ∥γ. Now, taking into account that

φ(t)− φ(1)

|1− t|γ
≤ ∥φ∥γ (33)

along with φ2(0) = 0 and

|f(φi(t))− f(φi(s))|
|φi(t)− φi(s)|γ

≤ ∥f∥γ,
|φi(t)− φi(s)|

|t− s|
≤ ∥φi∥1 − φi(0) for i = 1, 2, (34)

we arrive at

|(Tf)(t)− (Tf)(s)|
|t− s|γ

≤ ∥φ∥γ∥f∥γ(∥φ1∥1 − φ1(0))
γ

+ ∥φ∥γ∥f∥γ∥φ2∥γ1 + ∥φ∥γ|f(φ1(s))|+ ∥φ∥γ|f(φ2)(s)|.
(35)

Now, by Lemma 5 (iii), we have

|f(φi(s))| ≤ ∥f∥γ∥φi∥γ1 for i = 1, 2. (36)

From this and the last estimate, we infer that

|(Tf)(t)− (Tf)(s)|
|t− s|γ

≤ ∥φ∥γ∥f∥γ(∥φ1∥1 − φ1(0))
γ + ∥φ∥γ∥f∥γ∥φ2∥γ1 + ∥φ∥γ|∥f∥γ∥φ1∥γ1

+ ∥φ∥γ∥f∥γ∥φ2∥γ1 = ∥φ∥γ (2∥φ2∥γ1 + (∥φ1∥1 − φ1(0))
γ + ∥φ1∥γ1) ∥f∥γ.

(37)

This inequality together with the fact that (Tf)(0) = 0 give us

∥Tf∥γ ≤ ∥φ∥γ (2∥φ2∥γ1 + (∥φ1∥1 − φ1(0))
γ + ∥φ1∥γ1) ∥f∥γ, (38)

which proves (ii).
Next, we turn to (iii). Taking into account the inequality (35) and since for any f, g ∈ D0,1

γ [0, 1],
Tf − Tg = T (f − g), we deduce that, for fixed t, s ∈ [0, 1], t ̸= s

|Tf(t)− Tg(t)− (Tf(s)− Tg(s))|
|t− s|γ

=
|T (f − g)(t)− T (f − g)(s)|

|t− s|γ

≤ ∥φ∥γ∥f − g∥γ(∥φ1∥1 − φ1(0))
γ + ∥φ∥γ∥f − g∥γ∥φ2∥γ1

+ ∥φ∥γ|(f − g)(φ1(s))|+ ∥φ∥γ|(f − g)(φ2)(s)|.

(39)
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Now, we will obtain an estimate of |(f − g)(φ1(s))|. Since (f − g)(1) = 0 and φ1(1) = 1, we deduce
that

|(f − g)(φ1(s))| = |(f − g)(φ1(s))− (f − g)(1)| = |(f − g)(φ1(s))− (f − g)(φ1(1))|
|φ1(s)− φ1(1)|γ

|φ1(s)− φ1(1)|γ

≤ ∥f − g∥γ
(
|φ1(s)− φ1(1)|

|s− 1|

)γ

|1− s|γ ≤ ∥f − g∥γ(∥φ1∥1 − φ1(0))
γ.

(40)

Taking into account this result and (iii) from Lemma 5, from inequality (39) it follows that

|Tf(t)− Tg(t)− (Tf(s)− Tg(s))|
|t− s|γ

≤ ∥φ∥γ∥f − g∥γ(∥φ1∥1 − φ1(0))
γ + ∥φ∥γ∥f − g∥γ∥φ2∥γ1

+ ∥φ∥γ∥f − g∥γ(∥φ1∥1 − φ1(0))
γ + ∥φ∥γ∥φ2∥γ1∥f − g∥γ = 2∥φ∥γ(∥φ2∥γ1 + (∥φ1∥1 − φ1(0))

γ)∥f − g∥γ.

Finally, since (Tf − Tg)(0) = 0, we deduce that

d(Tf, Tg) = ∥Tf − Tg∥γ ≤ 2∥φ∥γ(∥φ2∥γ1 + (∥φ1∥1 − φ1(0))
γ)∥f − g∥γ

= 2∥φ∥γ(∥φ2∥γ1 + (∥φ1∥1 − φ1(0))
γ)d(f, g).

(41)

This completes the proof of (iii).
Lastly, to determine (iv) we use the Banach contraction principle along with the assumption that

∥φ∥γ (2∥φ2∥γ1 + (∥φ1∥1 − φ1(0))
γ + ∥φ1∥γ1) < 1, (42)

which, by (iii) grants that T is a contraction having a unique fixed point.

As we comment on in Section 1, the functional equation

f(t) = tf(αt+ 1− α) + (1− t)f(βt) (43)

for any t ∈ [0, 1] is treated in [17] under conditions f(0) = 0, f(1) = 1 and 0 ≤ α < β < 1. This
functional equation is a particular case of (4), where φ(t) = t, φ1(t) = αt + 1 − α, φ2(t) = βt for
any t ∈ [0, 1]. It can be easily seen that for 0 < γ ≤ 1, φ ∈ D0,1

γ [0, 1] and ∥φ∥γ = 1 we have
φi : [0, 1] → [0, 1], i = 1, 2, φ1(1) = 1, φ2(0) = 0, φ1, φ2 ∈ H1[0, 1], ∥φ1∥1 = 1, φ1(0) = 1 − α, and
∥φ2∥1 = β. We also have the following

2∥φ∥γ(∥φ2∥γ1 + (∥φ1∥1 − φ1(0))
γ) = 2 (βγ + (1− 1 + α)γ) = 2(αγ + βγ), (44)

and hence, by Theorem 1 (iii)− (iv) the following result follows.

Corollary 1. Suppose that 0 < α ≤ β ≤ 1.

(a) If αγ + βγ < 1/2 then the functional equation (43) has a unique solution f ⋆ in D0,1
γ [0, 1].

Furthermore, given f0 ∈ D0,1
γ [0, 1] the iteration {fn} ∈ D0,1

γ [0, 1] given by

fn(t) = tfn−1(αt+ 1− α) + (1− t)fn−1(βt) (45)

for any n ∈ N converges to the unique solution f ⋆.

(b) If 0 < β < 4−
1
γ then (43) satisfies the same conclusion as in (a).
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We conclude this section with the remark that the above results can be easily generalized to non-
homogeneous equations with homogeneous boundary conditions, which are more feasible to analyze
numerically. Hence, let us put g(t) = f(t)− t. Then, g(0) = g(1) = 0 and Tg = Tf − Tt = f − Tt,
hence

g(t) = Tg(t) + Tt− t. (46)

Notice that since f ∈ D0,1
γ [0, 1] we now have g ∈ Hγ

0 [0, 1]. The existence and uniqueness of f is
then equivalent to the existence and uniqueness of g. We can generalize this idea and consider the
following problem

f(t) = Tf(t) + k(t), t ∈ [0, 1], f(0) = f(1) = 0, k ∈ Hγ
0 [0, 1]. (47)

It is easy to see that the above has a unique solution in Hγ
0 [0, 1].

Corollary 2. Under the assumptions of Theorem 1 the problem (47) has a unique solution in Hγ
0 [0, 1].

Proof. Since Hγ
0 [0, 1] is a Banach space, the operator T has a well-defined norm which, due to the

assumption, satisfies ∥T∥ < 1. Therefore, by the geometric series theorem, the operator (I − T )−1 :
Hγ

0 [0, 1] 7→ Hγ
0 [0, 1] exists and has a trivial kernel (see [20], Chapter 1.23). The unique solution is

then given by f = (I − T )−1k.

4 Collocation method
As was shown in our previous works [9, 10] the iteration of Theorem 1 is not necessarily the method
of choice for the practical solution of functional equations. This is due to exponential complexity
in both memory and CPU time. In [9] we have overcome this difficulty by devising a second-order
collocation method, and in this section we extend it to the Hölder case. Note that numerical schemes
usually behave well when applied to equations with solutions of a certain smoothness. In the low
regularity case, some problems in proving convergence may arise.

For generality, we solve (47) instead of (1). This also has the advantage that in this case we work
in the Banach space Hγ

0 [0, 1]. The idea behind the collocation method [4] is based on the piecewise
polynomial approximation on subintervals. More specifically, divide [0, 1] into N subintervals. That
is, ti = ih with h = 1/N > 0 where i = 0, 1, ..., N . We construct a continuous approximation fh
to the solution of (1) by requiring that on each subinterval it is a linear polynomial (a higher-order
approximation can also be constructed on a refined grid). The linear function is then required to
satisfy the functional equation at each node (it collocates the solution). Therefore, we have the
following conditions for the collocation approximation

fh(0) = 0, fh(1) = 1, (boundary conditions),
fh(t

+
i−1) = fh(t

−
i ), i = 1, 2, ..., N − 1, (continuity),

fh(ti) = Tfh(ti) + k(ti), i = 1, 2, ..., N − 1, (collocation).
(48)

Since in each interval the linear approximation has the form ait+ bi in total we have 2N unknowns
{ai, bi}N1 to determine. On the other hand, (48) gives us 2 boundary conditions, N − 1 continuity
points, and N − 1 collocation equations. In total we have 2 + N − 1 + N − 1 = 2N equation for
2N unknowns and we can hope that the corresponding system can be uniquely solved. We will
not pursue here the task of showing that the system matrix is non-singular. Due to nonlocality
and the fact that (1) mixes arguments in a nonlinear way with φ1,2 functions, this seems to be a
difficult and interesting problem. A much simpler case was solved in [5] where the authors considered
the pantograph functional equation with only one proportional delay. Their analysis required very
involved techniques and consideration of many cases. We leave the corresponding problem for future
work and focus only on the numerical aspects of the scheme.
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To analyze the collocation scheme, we introduce the linear projection operator by

Phu(t) =
1

h
((t− ti−1)u(ti) + (ti − t)u(ti−1)) , t ∈ [ti−1, ti], i = 1, 2, 3, ..., N. (49)

In [9] we have shown that Phu is Lipschitz continuous with a unit norm. Since a Lipschitz function
is γ-Hölder for 0 < γ ≤ 1 the operator Ph : Hγ 7→ Hγ is well-defined and below we will find an
estimate for its norm when acting between these spaces. Many properties of linear interpolation are
well known for the C2 functions. For our analysis, we need more refined estimates for functions of
much lower regularity. First, we prove the error bound in the supremum norm.

Proposition 1. Let u ∈ Hk,γ[0, 1] with k = 0, 1 and 0 < γ ≤ 1. Then,

∥Phu− u∥∞ ≤ 2−γ−(2−γ)khk+γ∥u∥k,γ. (50)

Proof. For any t ∈ [ti, ti+1] we have

|Phu(t)− u(t)| = 1

h
|(t− ti)(u(ti+1)− u(t)) + (ti+1 − t)(u(ti)− u(t))| . (51)

Now, for k = 0 we can use the Hölder continuity of u to obtain

|Phu(t)− u(t)| ≤ ∥u∥γ
h

((t− ti)(ti+1 − t)γ + (ti+1 − t)(t− ti)
γ) . (52)

It is a simple calculation to show that the right-hand side of the above, as a function of t, attains its
maximum for t = (ti+1 + ti)/2 = (i+ 1/2)h, hence

|Phu(t)− u(t)| ≤ ∥u∥γ
h

(
2−1−γh1+γ + 2−1−γh1+γ

)
= 2−γhγ∥u∥γ, (53)

which proves the case when k = 0. Now, for k = 1 we can refine the estimate in (51)

|Phu(t)− u(t)| = (ti+1 − t)(t− ti)

h

∣∣∣∣u(ti+1)− u(t)

ti+1 − t
− u(t)− u(ti)

t− ti

∣∣∣∣ . (54)

From the mean-value theorem there exist ξ, η ∈ (ti, ti+1) such that

|Phu(t)− u(t)| = (ti+1 − t)(t− ti)

h
|u′(ξ)− u′(η)| ≤ h2

4h
hγ∥u′∥γ

= 2−2h1+γ∥u′∥γ ≤ 2−2h1+γ∥u∥1,γ,
(55)

and the proof is complete.

As we can see, for H1,1[0, 1] functions, that is, when the derivative is Lipschitz, we obtain the
optimal second-order accuracy of linear interpolation. Classically, this result is proven for C2[0, 1]
functions that coincide almost everywhere with H1,1[0, 1]. In the twice-differentiable case, the error
constant is equal to 2−3, while for our case it is 2−2. It is also possible to obtain interpolation error
bounds in Hölder norms which confirms the usual folklore that the order of interpolation is equal to
the degree of regularity minus the strength of the norm.

Proposition 2. Let u ∈ Hk,β[0, 1] with k = 0, 1 and 0 < β ≤ 1. Then, for 0 < γ ≤ min{1, k + β}
we have

∥Phu− u∥γ ≤ Chk+β−γ∥u∥k,β, (56)

where C > 0 is a constant dependent only on k, β, and γ.
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Proof. First, assume that t, s ∈ [ti−1, ti]. Set eh := Phu− u and by (51) write

|eh(t)− eh(s)| =
1

h

∣∣∣∣(t− ti−1)(u(ti)− u(t)) + (ti − t)(u(ti−1)− u(t))

−(s− ti−1)(u(ti)− u(s))− (ti − s)(u(ti−1)− u(s))

∣∣∣∣ . (57)

We can now combine the underlined terms of like type with each other

(t− ti−1)(u(ti)− u(t))− (s− ti−1)(u(ti)− u(s)) = (t− ti−1)(u(ti)− u(t))− (s− ti−1)(u(ti)− u(t))

+ (s− ti−1)(u(ti)− u(t))− (s− ti−1)(u(ti)− u(s))

= (t− s)(u(ti)− u(t))− (s− ti−1)(u(t)− u(s)),

(58)

and similarly with the dashed term

(ti− t)(u(ti−1)−u(t))− (ti− s)(u(ti−1)−u(s)) = (s− t)(u(ti−1)−u(t))− (ti− s)(u(t)−u(s)). (59)

Therefore, we obtain a simple fundamental expression for the difference in error

|eh(t)− eh(s)| =
1

h
|(t− s)(u(ti)− u(ti−1))− (ti − ti−1)(u(t)− u(s))| . (60)

Now, for k = 0 we can bound the above terms to obtain

|eh(t)− eh(s)| ≤
∥u∥β
h

(
|t− s|hβ + h|t− s|β

)
. (61)

Therefore, by dividing by |t− s|γ we have

|eh(t)− eh(s)|
|t− s|γ

≤ ∥u∥β
h

(
|t− s|1−γhβ + |t− s|β−γh

)
≤ 2hβ−γ∥u∥β, t, s ∈ [ti−1, ti], (62)

because |t− s| ≤ h. We have thus found the error estimate in the subinterval.
Assume now that k = 1 and write (60) in the following form

|eh(t)− eh(s)| = |t− s|
∣∣∣∣u(ti)− u(ti−1)

ti − ti−1

− u(t)− u(s)

t− s

∣∣∣∣ . (63)

From the mean-value theorem there exist ξ, η ∈ (ti−1, ti) such that

|eh(t)− eh(s)|
|t− s|γ

= |t− s|1−γ |u′(ξ)− u′(η)| ≤ |t− s|1−γhβ∥u′∥β ≤ h1+β−γ∥u∥1,β, (64)

for t, s ∈ [ti−1, ti]. To prove our assertion, we have to find similar bounds for any t, s ∈ [0, 1]. Without
loss of generality, suppose that t ∈ [ti−1, ti] and s ∈ [tj, tj+1] for 1 ≤ i ≤ j ≤ N . Then, noticing that
on the nodes the interpolation error vanishes, that is, eh(tl) = 0 for 0 ≤ l ≤ N , by (62) and (64) we
can write

|eh(t)− eh(s)| ≤ |eh(t)− eh(ti)|+ |eh(tj)− eh(s)| ≤ C0h
k+β−γ∥u∥k,β ((ti − t)γ + (s− tj)

γ) , (65)

for some C0 > 0. Furthermore, we use the reverse Hölder inequality to obtain

(ti − t) + (s− tj) ≥ ((ti − t)γ + (s− tj)
γ)

1
γ (1γ + 1γ)1−

1
γ , (66)
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or
(ti − t)γ + (s− tj)

γ ≤ 21−γ ((ti − t) + (s− tj))
γ . (67)

Therefore, there exists a constant C > 0 such that

|eh(t)− eh(s)| ≤ Chk+β−γ∥u∥k,β|s− tj + ti − t|γ. (68)

The proof concludes by observing the fact that s − tj + ti − t ≤ s − t, dividing, and taking the
supremum.

We can now proceed to showing that Ph is a bounded operator when acting on the Hölder space.
The main difficulty in finding the norm is the fact that Phu is a piecewise linear function and we
have to compare values of Phu at points belonging to possibly distant subintervals. The following
result states a bound on the norm, which, as in our numerical computations and the beginning of
the proof, is not optimal. However, it suffices to show convergence of the collocation scheme, and we
leave the problem of sharpening of the estimate for future work.

Lemma 6. Let Ph : Hγ[0, 1] 7→ Hγ[0, 1] with 0 < γ < 1. Then

∥Ph∥ ≤ 1 + 21−γ. (69)

Proof. Take t, s ∈ [0, 1]. We will consider three cases: t and s are in the same subinterval, in
neighboring subintervals, or are separated by at least a subinterval. More specifically, we consider

(i) t, s ∈ [ti−1, ti] for some i = 1, 2, ..., N ,

(ii) t ∈ [ti−1, ti] and s ∈ [ti, ti+1] for some i = 1, 2, ..., N − 1,

(iii) t ∈ [ti−1, ti] and s ∈ [tj, tj+1] for some i = 1, 2, ..., N − 2 and j = 3, 4, ..., N − 1 with i < j,

where, without any loss of generality, we have assumed that t < s. When t and s belong to a
subinterval [ti−1, ti], the function Phu is a linear segment that is trivially Hölder and according to
the definition (49)

|Phu(t)− Phu(s)| =
|u(ti)− u(ti−1)|

h
|t− s|, (70)

hence, since Phu(0) = u(0) and |t− s| < h we have

|Ph(0)|+
|Phu(t)− Phu(s)|

|t− s|γ
≤ |u(0)|+ sup

t̸=s

|u(t)− u(s)|
|s− t|γ

= ∥u∥γ, (71)

which proves (i).
Now, we consider case (ii), that is, t and s are in neighboring subintervals with ti−1 ≤ t ≤ ti <

s ≤ ti+1. We have
|Phu(t)− Phu(s)| ≤ |Phu(t)− u(ti)|+ |u(ti)− Phu(s)|, (72)

and due to the definition of the projection (49) and u(ti) = h−1((t− ti−1)+(ti− t))u(ti) we can write

|Phu(t)− u(ti)| =
ti − t

h
|u(ti)− u(ti−1)| ≤

(
sup
t̸=s

|u(t)− u(s)|
|s− t|γ

)
hγ−1(ti − t), (73)

and similarly for |Phu(s)− u(ti)|. Then,

|Phu(t)− Phu(s)| ≤
(
sup
t̸=s

|u(t)− u(s)|
|s− t|γ

)
hγ−1(ti − t+ s− ti)

=

(
sup
t ̸=s

|u(t)− u(s)|
|s− t|γ

)
hγ−1|t− s| ≤ 21−γ

(
sup
t̸=s

|u(t)− u(s)|
|s− t|γ

)
|t− s|γ,

(74)
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since in our case |t− s| < 2h. Therefore, after dividing by |t− s|γ, adding Phu(0) = u(0), and taking
the supremum, we obtain

|Ph(0)|+
|Phu(t)− Phu(s)|

|t− s|γ
≤ |u(0)|+ 21−γ sup

t̸=s

|u(t)− u(s)|
|t− s|γ

≤ 21−γ∥u∥γ, (75)

which is the needed estimate for the (ii) case.
For the (iii) case, we can again use the approximation property of the interpolation. That is, by

Proposition 1

|Phu(t)− Phu(s)| ≤ |Phu(t)− u(t)|+ |u(t)− u(s)|+ |u(s)− Phu(s)|

≤ 21−γhγ∥u∥γ + sup
t̸=s

|u(t)− u(s)|
|s− t|γ

|t− s|γ.
(76)

Now, since h ≤ |t− s| it follows that

|Phu(0)|+
|Phu(t)− Phu(s)|

|t− s|γ
≤ 21−γ∥u∥γ + |u(0)|+ sup

t̸=s

|u(t)− u(s)|
|s− t|γ

= (1 + 21−γ)∥u∥γ.
(77)

Now, in estimates for each of the three cases (i)-(iii), that is (71), (75), and (77), we can take the
supremum over all t ̸= s to obtain that ∥Phu∥γ ≤ (1 + 21−γ)∥u∥γ. This implies ∥Ph∥ ≤ 1 + 21−γ and
concludes the proof.

Now, we are ready to prove our main result in this section, the uniform convergence of the
collocation scheme. From the proof, it can also be inferred that the method converges in the Hölder
norm. However, we state our error bound in the supremum norm since it is much more natural and
useful in practice.

Theorem 2. Let f be the solution of (1) while fh its collocation approximation that can be found
from (48). Assume that 2∥φ∥γ(∥φ2∥γ1 + (∥φ1∥1 −φ1(0))

γ) < (1+ 21−γ)−1 for some 0 < γ < 1. Then,

∥f − fh∥∞ ≤ Chγ, (78)

for some C > 0 dependent only on f , γ, and the coefficients of (1). Moreover, if f ∈ H1,γ
0 , then

∥f − fh∥∞ ≤ Ch1+γ. (79)

Proof. By the assumption and Corollary 2 we know that there exists a unique solution f ∈ Hγ
0 [0, 1].

Start by noticing that since fh is a linear function, we can act with Ph on the collocation equation
(48) and obtain

fh = PhTfh + Phk. (80)

We can also apply Ph to the exact equation f = Tf + k and subtract to arrive at

fh − Phf = PhTfh − PhTf, (81)

or by subtracting f we can write

fh − f = PhT (fh − f) + Phf − f (82)

This leads to
f − fh = (I − PhT )

−1(f − Phf), (83)
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since by the geometric series theorem, the operator (I − PhT )
−1 exists because of our assumption.

Moreover, Lemma 6, and Theorem 1 (iii) give

∥PhT∥ ≤ ∥Ph∥∥T∥ ≤ (1 + 21−γ) (2∥φ∥γ(∥φ2∥γ1 + (∥φ1∥1 − φ1(0))
γ)) < 1. (84)

When we apply the γ-Hölder norm, we can obtain the bound for the scheme error

∥f − fh∥γ ≤ ∥(I − PhT )
−1∥∥f − Phf∥γ. (85)

Now, for f ∈ Hk,γ[0, 1] with k = 0, 1 by Proposition 2 we have

∥f − fh∥γ ≤ C

1− ∥PhT∥
hk+γ−γ∥u∥k,γ ≤ C1h

k, (86)

for some h-independent constant C1 > 0. For any t ∈ [0, 1] there exists a subinterval such that
t ∈ [ti−1, ti]. Then,

|f(t)− fh(t)| ≤ |f(t)− f(ti)|+ |f(ti)− fh(t)| = |f(t)− Phf(ti)|+ |f(ti)− fh(t)|, (87)

because the interpolant Phf is equal to f on the nodes. Then, by the Hölder norm estimate (86) and
again by Proposition 2 we have

|f(t)− fh(t)| ≤ ∥f − Phf∥γhγ + ∥f − fh∥γhγ ≤ Chk+γ−γhγ∥f∥k,γ + C1h
k+γ

≤ Chγ+k+γ−γ = Chk+γ.
(88)

Taking the supremum over t ∈ [0, 1] gives the conclusion.

As can be seen from the theorem above, the error of the numerical scheme is of the same order as
the interpolation error. Minimally, the error is of order γ, but if the solution is more regular, it can
increase to the optimal level. A discussion of the regularity of solutions to (47) can be found in [9].

5 Numerical example
In this section, we present several illustrative examples that verify our above theoretical consider-
ations. Since the case of smooth solutions has been analyzed in [9], here we focus only on the less
regular, Hölder continuous functions.

It is a matter of choosing an appropriate k in (47) to produce an exact arbitrary solution. Thanks
to that, we can test the collocation scheme in various situations. For example, we can choose the
following γ-Hölder function

f(t) =

(
1

2
−

∣∣∣∣t− 1

2

∣∣∣∣)γ

∈ Hγ
0 [0, 1], 0 < γ < 1. (89)

Note that f is not differentiable, has a characteristic cusp at t = 1/2, and for small γ its derivative
at t = 0, 1 becomes unbounded (see Fig. 1).

For the coefficients we choose

φ(x) = x, φ1(x) = 1− α

2
(1− x), φ2(x) =

α

2
x, α ∈

(
0, (22−γ(1 + 21−γ))−γ

)
. (90)

By a straightforward computation we can compute the respective norms of the coefficients to find
that ∥φ∥γ = 1, ∥φ1∥1 = 1, ∥φ2∥1 = α/2. Hence, with our choice of the range for the parameter α we
check that the assumption of Theorem 2 is satisfied. We also tested other choices with essentially
the same conclusions. The maximum error of the collocation scheme, that is ∥u− uh∥∞ is depicted
in Fig. 2 on a log-log scale. As can be seen, the computations verify the claim of Theorem 2 that
the order of convergence is strongly related to the smoothness of the solution and is equal to γ. Note
that error lines become almost parallel to the reference even for a small number of subintervals.
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Figure 1: Exemplary exact solution (89) for different γ.
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Figure 2: Maximum error of the collocation scheme applied (47) with the exact solution (89).
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6 Conclusion and look forward
Functional equations with proportional delay pose an interesting problem for both theoretical and
numerical analysis. A careful choice of the function space in which the solution is to be sought allows
for the use of the Banach contraction principle to prove the existence and uniqueness. From a numer-
ical point of view, folklore tells us that the more regularity the solution has, the better the numerical
approximation. In the Hölder case, however, we are far from the optimal twice-differentiable situ-
ation, which requires the development of different techniques to find the interpolation error. From
that, the convergence proof follows the usual path.

We have encountered two interesting open problems to investigate in future work. On the one
hand, in this paper, the solution of the algebraic system (48) is assumed to exist. A proof of this
claim would be most welcome for the completeness of the theory. However, as mentioned above, the
development of the general p-order collocation scheme would produce a very versatile and accurate
numerical method. We plan to address both of these problems in future work.
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