Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136582
Campo DC Valoridioma
dc.contributor.authorCaballero, Josefaen_US
dc.contributor.authorOkrasinska-Plociniczak, Hannaen_US
dc.contributor.authorPlociniczak, Lukaszen_US
dc.contributor.authorSadarangani, Kishinen_US
dc.date.accessioned2025-03-10T09:29:50Z-
dc.date.available2025-03-10T09:29:50Z-
dc.date.issued2025en_US
dc.identifier.issn0168-9274en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/136582-
dc.description.abstractWe consider a generalization of a functional equation that models the learning process in various animal species. The equation can be considered nonlocal, as it is built with a convex combination of the unknown function evaluated at mixed arguments. This makes the equation contain two terms with vanishing delays. We prove the existence and uniqueness of the solution in the H & ouml;lder space which is a natural function space to consider. In the second part of the paper, we devise an efficient numerical collocation method used to find an approximation to the main problem. We prove the convergence of the scheme and, in passing, several properties of the linear interpolation operator acting on the H & ouml;lder space. Numerical simulations verify that the order of convergence of the method (measured in the supremum norm) is equal to the order of H & ouml;lder continuity.en_US
dc.languageengen_US
dc.relation.ispartofApplied Numerical Mathematicsen_US
dc.sourceApplied Numerical Mathematics[ISSN 0168-9274],v. 212, p. 268-282, (Junio 2025)en_US
dc.subject12 Matemáticasen_US
dc.subject.otherStabilityen_US
dc.subject.otherFunctional Equationen_US
dc.subject.otherNonlocal Equationen_US
dc.subject.otherH & Ouml;Lder Continuityen_US
dc.subject.otherCollocation Methoden_US
dc.subject.otherVanishing Delayen_US
dc.titleFunctional equation arising in behavioral sciences: solvability and collocation scheme in Hölder spacesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apnum.2025.02.010en_US
dc.identifier.isi001430938500001-
dc.identifier.eissn1873-5460-
dc.description.lastpage282en_US
dc.description.firstpage268en_US
dc.relation.volume212en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages15en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Caballero, J-
dc.contributor.wosstandardWOS:Okrasinska-Plociniczak, H-
dc.contributor.wosstandardWOS:Plociniczak, L-
dc.contributor.wosstandardWOS:Sadarangani, K-
dc.date.coverdateJunio 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr1,006
dc.description.jcr2,2
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0001-8842-426X-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameCaballero Mena, Josefa-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Colección:Artículos
Adobe PDF (546,83 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.