Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/136581
Título: | Optimization of Autoencoders for Speckle Reduction in SAR Imagery Through Variance Analysis and Quantitative Evaluation | Autores/as: | Cardona Mesa, Ahmed Alejandro Vasquez Salazar, Ruben Dario Diaz-Paz, Jean P. Sarmiento-Maldonado, Henry O. Gomez, Luis Travieso-González, Carlos M. |
Clasificación UNESCO: | 210399 Otras (especificar) | Palabras clave: | Network Despeckle Synthetic Aperture Radar Deep Learning Autoencoder, et al. |
Fecha de publicación: | 2025 | Publicación seriada: | Mathematics | Resumen: | Speckle reduction in Synthetic Aperture Radar (SAR) images is a crucial challenge for effective image analysis and interpretation in remote sensing applications. This study proposes a novel deep learning-based approach using autoencoder architectures for SAR image despeckling, incorporating analysis of variance (ANOVA) for hyperparameter optimization. The research addresses significant gaps in existing methods, such as the lack of rigorous model evaluation and the absence of systematic optimization techniques for deep learning models in SAR image processing. The methodology involves training 240 autoencoder models on real-world SAR data, with performance metrics evaluated using Mean Squared Error (MSE), Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Equivalent Number of Looks (ENL). By employing Pareto frontier optimization, the study identifies models that effectively balance denoising performance with the preservation of image fidelity. The results demonstrate substantial improvements in speckle reduction and image quality, validating the effectiveness of the proposed approach. This work advances the application of deep learning in SAR image denoising, offering a comprehensive framework for model evaluation and optimization. | URI: | http://hdl.handle.net/10553/136581 | ISSN: | 2227-7390 | DOI: | 10.3390/math13030457 | Fuente: | Mathematics,v. 13 (3), (Febrero 2025) |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 30-mar-2025
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.