Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136581
Título: Optimization of Autoencoders for Speckle Reduction in SAR Imagery Through Variance Analysis and Quantitative Evaluation
Autores/as: Cardona Mesa, Ahmed Alejandro 
Vasquez Salazar, Ruben Dario 
Diaz-Paz, Jean P.
Sarmiento-Maldonado, Henry O.
Gomez, Luis 
Travieso-González, Carlos M. 
Clasificación UNESCO: 210399 Otras (especificar)
Palabras clave: Network
Despeckle
Synthetic Aperture Radar
Deep Learning
Autoencoder, et al.
Fecha de publicación: 2025
Publicación seriada: Mathematics
Resumen: Speckle reduction in Synthetic Aperture Radar (SAR) images is a crucial challenge for effective image analysis and interpretation in remote sensing applications. This study proposes a novel deep learning-based approach using autoencoder architectures for SAR image despeckling, incorporating analysis of variance (ANOVA) for hyperparameter optimization. The research addresses significant gaps in existing methods, such as the lack of rigorous model evaluation and the absence of systematic optimization techniques for deep learning models in SAR image processing. The methodology involves training 240 autoencoder models on real-world SAR data, with performance metrics evaluated using Mean Squared Error (MSE), Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Equivalent Number of Looks (ENL). By employing Pareto frontier optimization, the study identifies models that effectively balance denoising performance with the preservation of image fidelity. The results demonstrate substantial improvements in speckle reduction and image quality, validating the effectiveness of the proposed approach. This work advances the application of deep learning in SAR image denoising, offering a comprehensive framework for model evaluation and optimization.
URI: http://hdl.handle.net/10553/136581
ISSN: 2227-7390
DOI: 10.3390/math13030457
Fuente: Mathematics,v. 13 (3), (Febrero 2025)
Colección:Artículos
Adobe PDF (2,7 MB)
Vista completa

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 30-mar-2025

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.