Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/136581
Campo DC Valoridioma
dc.contributor.authorCardona Mesa, Ahmed Alejandro-
dc.contributor.authorVasquez Salazar, Ruben Dario-
dc.contributor.authorDiaz-Paz, Jean P.-
dc.contributor.authorSarmiento-Maldonado, Henry O.-
dc.contributor.authorGomez, Luis-
dc.contributor.authorTravieso-González, Carlos M.-
dc.date.accessioned2025-03-10T09:25:07Z-
dc.date.available2025-03-10T09:25:07Z-
dc.date.issued2025-
dc.identifier.issn2227-7390-
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/136581-
dc.description.abstractSpeckle reduction in Synthetic Aperture Radar (SAR) images is a crucial challenge for effective image analysis and interpretation in remote sensing applications. This study proposes a novel deep learning-based approach using autoencoder architectures for SAR image despeckling, incorporating analysis of variance (ANOVA) for hyperparameter optimization. The research addresses significant gaps in existing methods, such as the lack of rigorous model evaluation and the absence of systematic optimization techniques for deep learning models in SAR image processing. The methodology involves training 240 autoencoder models on real-world SAR data, with performance metrics evaluated using Mean Squared Error (MSE), Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Equivalent Number of Looks (ENL). By employing Pareto frontier optimization, the study identifies models that effectively balance denoising performance with the preservation of image fidelity. The results demonstrate substantial improvements in speckle reduction and image quality, validating the effectiveness of the proposed approach. This work advances the application of deep learning in SAR image denoising, offering a comprehensive framework for model evaluation and optimization.-
dc.languageeng-
dc.relation.ispartofMathematics-
dc.sourceMathematics [ISSN 2227-7390], v. 13 (3), (Febrero 2025)-
dc.subject210399 Otras (especificar)-
dc.subject.otherNetwork-
dc.subject.otherDespeckle-
dc.subject.otherSynthetic Aperture Radar-
dc.subject.otherDeep Learning-
dc.subject.otherAutoencoder-
dc.subject.otherAnalysis Of Variance-
dc.subject.otherHyperparameter-
dc.titleOptimization of Autoencoders for Speckle Reduction in SAR Imagery Through Variance Analysis and Quantitative Evaluation-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.3390/math13030457-
dc.identifier.scopus85217775934-
dc.identifier.isi001418579700001-
dc.contributor.orcid0000-0001-5263-2569-
dc.contributor.orcid0000-0002-1690-8393-
dc.contributor.orcid0000-0001-6833-6879-
dc.contributor.orcid0000-0001-8011-1293-
dc.contributor.orcid0000-0003-0667-2302-
dc.contributor.orcid0000-0002-4621-2768-
dc.contributor.authorscopusid58544725400-
dc.contributor.authorscopusid58544220200-
dc.contributor.authorscopusid57217181133-
dc.contributor.authorscopusid27467966500-
dc.contributor.authorscopusid56789548300-
dc.contributor.authorscopusid57219115631-
dc.identifier.eissn2227-7390-
dc.identifier.issue3-
dc.relation.volume13-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngid53987665-
dc.contributor.daisngid17775872-
dc.contributor.daisngid68893406-
dc.contributor.daisngid68898485-
dc.contributor.daisngid58145872-
dc.contributor.daisngid65866836-
dc.description.numberofpages27-
dc.utils.revision-
dc.contributor.wosstandardWOS:Cardona-Mesa, AA-
dc.contributor.wosstandardWOS:Vásquez-Salazar, RD-
dc.contributor.wosstandardWOS:Diaz-Paz, JP-
dc.contributor.wosstandardWOS:Sarmiento-Maldonado, HO-
dc.contributor.wosstandardWOS:Gómez, L-
dc.contributor.wosstandardWOS:Travieso-González, CM-
dc.date.coverdateFebrero 2025-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
dc.description.sjr0,475-
dc.description.jcr2,3-
dc.description.sjrqQ2-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds10,4-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-0667-2302-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameCardona Mesa, Ahmed Alejandro-
crisitem.author.fullNameVázquez Salazar, Rubén Darío-
crisitem.author.fullNameGómez Déniz, Luis-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
Adobe PDF (2,7 MB)
Vista resumida

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 08-jun-2025

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.