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Abstract: Speckle reduction in Synthetic Aperture Radar (SAR) images is a crucial chal-
lenge for effective image analysis and interpretation in remote sensing applications. This
study proposes a novel deep learning-based approach using autoencoder architectures for
SAR image despeckling, incorporating analysis of variance (ANOVA) for hyperparameter
optimization. The research addresses significant gaps in existing methods, such as the
lack of rigorous model evaluation and the absence of systematic optimization techniques
for deep learning models in SAR image processing. The methodology involves training
240 autoencoder models on real-world SAR data, with performance metrics evaluated
using Mean Squared Error (MSE), Structural Similarity Index (SSIM), Peak Signal-to-Noise
Ratio (PSNR), and Equivalent Number of Looks (ENL). By employing Pareto frontier opti-
mization, the study identifies models that effectively balance denoising performance with
the preservation of image fidelity. The results demonstrate substantial improvements in
speckle reduction and image quality, validating the effectiveness of the proposed approach.
This work advances the application of deep learning in SAR image denoising, offering a
comprehensive framework for model evaluation and optimization.

Keywords: despeckle; Synthetic Aperture Radar; deep learning; autoencoder; analysis of
variance; hyperparameter

MSC: 68T07; 68U10

1. Introduction
Synthetic Aperture Radar (SAR) is an imaging technique that uses active sensors to

create high-resolution images of the Earth’s surface. SAR satellites send microwave signals
to the target area, record and process the reflected signal to generate images [1]. SAR
images suffer from speckle, a spatially correlated, signal-dependent noise that degrades
quality and complicates processing [2]. Speckle originates from the coherent nature of SAR
systems, hiding scene details [3] and making analysis challenging. Traditional denoising
methods are often ineffective [4]. The nature and characteristics of speckle in SAR images
have been modeled. This model includes a multiplicative component of speckle in the
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amplitude and an additive component in the phase. To eliminate the multiplicative com-
ponent, various image processing and filtering techniques are employed, such as Spatial
Filtering (including mean filtering, median filtering, and Lee filtering) [3], Frequency Do-
main Filtering (utilizing Fourier transforms and corresponding filtering), Statistics-Based
Filtering (using local or global statistics, such as the Frost filter), SAR Despeckling and
Restoration (involving multiplicative component decomposition), Wavelet-Based Filtering,
and Non-Local Filtering [5]. Similarly, for the removal of the additive component, which is
considered a more complex challenge than treating the multiplicative component in the
amplitude, some of the strategies and techniques used to address or reduce this component
include Spatial Filtering in the Phase (using spatial domain mean or median filters) [6],
SAR Interferometry (InSAR), Statistical Methods and Advanced Models (including Kalman
filtering and methods based on random field theory), Wavelet-Based Phase Filtering, Joint
Phase Processing (SAR interferometry), and Constant Amplitude Phase Techniques. Finally,
in many cases, a combination of multiple techniques is applied to achieve better results [7].

Speckle in SAR images has been addressed through various techniques, including
spatial filtering, frequency domain filtering, statistics-based filtering, SAR despeckling
and restoration, wavelet-based filtering, and non-local filtering. Additionally, methods for
dealing with the more complex additive component in the phase involve spatial filtering,
SAR interferometry, statistical methods, advanced models, wavelet-based phase filtering,
joint phase processing, and constant amplitude phase techniques. Often, a combination of
these techniques is used for optimal results [7]. Deep learning approaches have emerged
as a solution for despeckling SAR images, benefiting from their ability to learn complex
features, handle noisy data, and improve image quality. These models contribute to
enhanced classification, segmentation, and object detection, making them valuable in
various SAR image analysis contexts [8,9].

It is essential to highlight that with deep learning, it is possible to reduce time and
effort by automating the extraction of relevant features from SAR images, simplifying data
preprocessing. Furthermore, the scalability of these models and their ability to leverage
specialized hardware and software makes them a powerful option for processing large
volumes of SAR imagery, facilitating advances in the interpretation and analysis of these
images for different applications [10].

Deep learning-based SAR image despeckling uses algorithms like U-Net and de-
SpeckNet, showing promise in reducing speckle [11]. These and other techniques utilize
evaluation metrics like PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity
Index) to compare despeckled images to originals [12]. Based on the results obtained, it
was found that when applying deep learning techniques, it is possible to mitigate speckle
but it can introduce artifacts along feature boundaries [13].

In light of all that has been previously discussed and considering the significant
advantages of deep learning in SAR image processing, there is still a justification for new
proposals where these algorithms can substantially contribute to enhancing the results
achieved and documented in the scientific literature. As an active area of research in
recent decades, the emergence of the DL paradigm has established a clear division between
all methods: traditional despeckling techniques like [14], and the ones based on DL,
like [15–18], among others.

The availability of diverse and high-quality datasets plays a critical role in effectively
training deep learning models aimed at reducing smearing in SAR images [12]. A complete
dataset allows the model to recognize the complexities and variations present in SAR
images, facilitating reliable learning and effective noise reduction. Likewise, it allows
covering different terrains and climatic conditions of the study surfaces, guaranteeing that
the model learns to recognize multiple scenarios and improves its generalization capacity.
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This process helps address the challenges associated with SAR imagery speckle by allowing
the model to recognize the patterns and characteristics of this noise type, leading to more
effective speckle reduction strategies [19].

In the pursuit of identifying the best autoencoder architecture, an experiment was
conducted, encompassing the training of 240 autoencoders on a dataset comprising
1500 training images and 100 validation images. The dataset was designed in [20] and each
autoencoder architecture was evaluated using the ground truth defined in the validation set.

In this paper, we propose a new methodology and results derived from applying
analysis of variance (ANOVA) to determine the most appropriate hyperparameters for an
autoencoder model aimed at reducing the speckle in SAR images. When training deep
learning models such as the autoencoder used in this study, researchers and developers used
to modify the hyperparameters, seeking for optimal solutions with a heuristic approach,
trial-and-error tests, without a systematic path to determine the best configuration of
these parameters. In our methodology, ANOVA emerges as an organized and systematic
methodology to determine the optimal parameters for the model. The methodology
involves the evaluation of performance metrics, Mean Squared Error (MSE), Structural
Similarity Index (SSIM), Maximum Signal-to-Noise Ratio (PSNR), and Equivalent Number
of Looks (ENL), acquired from training a set of 240 different autoencoder models using
various hyperparameter configurations. Our results delve into analyzing these metrics to
find optimal trade-offs and identify the settings that best mitigate speckle while preserving
SAR image quality.

This paper is organized as follows. In Section 2, the dataset is described along with
the autoencoder model structure. In Section 3, the models are trained, a description of the
different configurations of the hyperparameters is presented, and the ANOVA methodology
is described. In Section 4, the main findings and results are shown. In Section 5, the
discussion of the results is carried out, with an emphasis on the novelty of the research.
Finally, in Section 6, some relevant conclusions are outlined.

2. Materials and Methods
In this section, the materials used and the methodologies employed on SAR image

despeckling using convolutional denoising autoencoder (CDAE) techniques are presented.
The challenges from SAR image despeckling and the scarcity of ground-truth datasets have
motivated innovative approaches aimed at addressing these obstacles. The initial subsec-
tion delves into the dataset used, coming from SAR images of Toronto, ON, Canada in 2022,
highlighting the creation of a ground-truth reference image for evaluation. The next sub-
section explores the application of autoencoder as a technique for SAR image despeckling,
emphasizing its potential to address the complexities associated with despeckle. Finally,
an exploration of ANOVA statistical analysis and its role in optimizing hyperparameter
selection for autoencoder-based SAR image despeckling models is covered.

2.1. The Dataset

The speckle in SAR images refers to the grainy or granular interference pattern that
appears as bright and dark randomly allocated points throughout the image. It is a multi-
plicative noise related to the coherent nature of SAR imaging, where electromagnetic waves
reflected from different scattering centers interfere with each other, creating constructive
and destructive patterns that leads to variations in pixel intensities. The speckle presence in
an image can alter some details in SAR imagery, making it challenging for image interpre-
tation and analysis [7]. An ideal filter should remove the speckle while preserving spatial
information without introducing artifacts [21].
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A SAR image Y can be mathematically expressed as:

Y = f (X, N) = X · N, (1)

where X is the corresponding noise-free image and N is the speckle. The speckle has a
Gamma distribution [22,23]. This distribution is given by Equation (2):

p(N) =
1

Γ(L)
NLe−NL, (2)

where L is the number of looks (ENL) of the SAR image.
The dataset used consists of actual Synthetic Aperture Radar (SAR) imagery obtained

from the ASF Datasearch Vertex. The specific dataset used is Sentinel 1A imagery of the
region of Toronto in 2022. The images were acquired in intensity mode level “L1 Detected
High-Res Dual-Pol (GRD-HD)” from 24 August to 22 December, with a revisiting period of
12 days. The images were obtained using the C band at 5.4 GHz with a resolution of 10 m
and VV polarization at a height of 693 km from Ecuador.

To create a ground truth reference image for evaluation, a multitemporal fusion
technique was applied. A reference image from 5 September was selected, and four
additional images were registered and averaged with respect to it. This process was
repeated with nine more images, resulting in a total of ten images being averaged. The
Equivalent Number of Looks (ENL) was calculated for the three resulting images, indicating
the level of noise reduction achieved. A mean of 10 samples was used according to [20].

Figure 1 presents a reference image of the SAR dataset utilized in the paper, showcas-
ing the ground-truth image and ground-truth image zoom in the first column and their
corresponding noised counterparts in the second column. This illustrative image serves
to highlight the impact of speckle on SAR images and the necessity of effective despeckle
techniques for preserving features in different applications.

Figure 1. (a) Ground-truth, (b) ground-truth zoom, (c) noisy, (d) noisy zoom.
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The dataset also includes image clipping, where specific regions of interest were
selected for evaluation. The dataset was designed to overcome the limitations of using
synthetic images with speckle models by providing more realistic SAR data for testing
despeckling filters.

2.2. Convolutional Denoising Autoencoder (CDAE) for SAR Image Despeckling

Despeckling an image is an essential preprocessing step for eliminating undesired pat-
terns and having noiseless images for any future postprocessing task, such as classification,
object detection, segmentation, among others.

SAR image despeckling faces several challenges due to the nature of speckle and the
limited availability of speckle-free SAR images [19,24]. Additionally, removing speckle
while preserving image details such as edges and textures is a challenging task [19]. In
recent years, various approaches have been proposed to address these challenges, including
traditional filters, statistical models, and machine learning-based methods. Among these
approaches, deep learning-based methods have shown promising results in SAR image
despeckling, with autoencoder being one of the most effective methods [19]. SAR image
despeckling is important for accurate image analysis in different applications. The removal
of speckle can improve the quality of SAR images, making it easier to extract useful
information and perform subsequent analyses [24]. Deep learning-based approaches, such
as CDAE, have shown potential in addressing the challenges associated with SAR image
despeckling [25]. The use of these methods can lead to improved accuracy and efficiency in
SAR image analysis, making it an important area of research [26].

Convolutional Neural Networks (CNNs) are a type of neural network commonly used
for image processing tasks, including image classification, segmentation, and denoising [27].
CNN consist of multiple layers, including convolutional layers that apply filters to the
input image, pooling layers that downsample the output, and fully connected layers that
perform classification tasks [28]. The ability of CNN to learn complex image features
has made them a popular choice for SAR image processing tasks, including despeckling.
Denoising Autoencoders (DAEs) are a type of neural network that can learn to remove
noise from input data. This method consist of two parts: an encoder that maps the input
data to a lower-dimensional representation, and a decoder that maps the lower-dimensional
representation back to the original input. By training the network on noisy input data and
clean output data, the network can learn to remove noise from new input data [29].

Convolutional Denoising Autoencoder (CDAE) is a type of DAE that uses convolu-
tional layers for image processing tasks [19]. The CDAE architecture consists of an encoder
that applies a series of convolutional and pooling layers to the input image, followed by
a decoder that applies a series of deconvolutional and upsampling layers to reconstruct
the clean image. By training the network on noisy input data and clean output data, the
network can learn to remove speckle from new input SAR images [12]. The use of CDAE
for SAR image despeckling has shown promising results, with improved image quality and
preservation of important features compared to traditional filtering methods (see Figure 2).
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Figure 2. General autoencoder (AE) architecture.
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The study involves the training of various autoencoder structures, systematically vary-
ing the depth and the number of convolutional layers to identify the optimal architecture
that yields the most effective reduction of speckle. Exploring a range of network depths and
convolutional layer configurations enables the determination of the most suitable CDAE
structure for the SAR image despeckling task. This approach aims to achieve superior
despeckling performance while preserving essential image features critical for accurate SAR
image analysis. The selected CDAE architecture effectively balances noise reduction and
feature preservation in actual SAR images, enhancing the interpretability and utility of the
despeckled images for downstream analysis and applications, with the results presented
in [30].

2.3. ANOVA and Its Application in Machine Learning

Analysis of variance (ANOVA) is a statistical technique used in various fields to
determine whether there are significant differences between groups or not, and to identify
factors that may contribute to these differences [31]. Machine learning (ML) is used to
analyze the impact of different hyperparameters on the performance of a model. It allows
us to identify and optimize the most important hyperparameters to improve the model’s
accuracy [32]. Hyperparameters are variables that are set before the model is trained.
Additionally, ANOVA can provide insights into the relationships between hyperparameters
and their impact on the model’s performance, allowing hyperparameter tuning based on
statistical criteria [31].

In the context of speckle denoising autoencoder models, ANOVA can be used to
identify the most important hyperparameters for optimizing the model’s performance [33].
The hyperparameter list includes factors such as the number of layers, the learning rate,
and the batch size. By analyzing the impact of these hyperparameters on the model’s
accuracy, ANOVA can help to optimize the model for better performance while reducing
overfitting [33]. ANOVA can also be used to compare the performance of different models
and identify the most effective approach for speckle denoising [34]. Our novel approach is
the use of ANOVA as a powerful tool for hyperparameter optimization in machine learning
to improve the accuracy and efficiency of despeckling autoencoder models.

3. Experimental Methodology
This section presents the training process of 240 autoencoder models for speckle

reduction in SAR images. The dataset was partitioned into training, testing, and validation
sets, enabling an assessment of the model’s generalization ability. Various architectures
were explored to strike a balance between speckle reduction and preservation of essential
image features, highlighting challenges in their selection and approaches for efficient
tuning. Statistical analyses, evaluation metrics, and comparative studies are discussed to
comprehend the performance of diverse autoencoder architectures.

3.1. Autoencoder Model Training

The comparison procedure involved an evaluation of 240 distinct autoencoder models
trained with a set of 1500 SAR images. The dataset was divided, with 85% of the im-
ages for training and the remaining 15% reserved for testing, ensuring an assessment of
the model performance. Moreover, to gauge the generalization capability of the trained
models, an additional set of 100 SAR images was set aside for validation. This approach
allowed a comprehensive assessment of how effectively the trained models could gener-
alize to unseen SAR data, underscoring the robustness of the selected architecture and
hyperparameter configurations.
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The training of the 240 autoencoder models was systematically conducted, encompass-
ing all possible combinations of 6 hyperparameters: i—the number of convolutional layers,
ii—the number of filters per layer, iii—the activation function, iv—batch size, v—loss func-
tion, and vi—learning rate, leveraging the comprehensive dataset comprising 1500 images
affected by speckle and an additional 1500 noise-free images as ground-truth. The training
process was performed in two stages. First, the models were trained using the ground-truth
images as input and output, allowing the models to grasp the characteristics and patterns
of the SAR images. Finally, the training was conducted using the noisy images as inputs
and the corresponding ground-truth images as desired outputs.

In order to obtain an effective method to despeckle SAR images, we used different
autoencoder architectures by varying their related hyperparameters. Figure 3 shows the
basic autoencoder architecture used.

Input Image
(512,512,1)

Conv2D

Conv2D

MaxPool

...

MaxPool

Output Image
(512,512,1)

deConv2D

deConv2D

Upsample

...

Upsample

Encoder Decoder

1-st
Layer

n-th
Layer

1-st
Layer

n-th
Layer

Figure 3. Autoencoder (AE) architecture.

3.2. Hyperparameters in Autoencoder Models

Hyperparameters are parameters set before training an autoencoder model that deter-
mine the model’s architecture and training process. These parameters include the number
of layers, the number of neurons in each layer, the learning rate, the regularization pa-
rameter, among others [35]. The choice of hyperparameters can significantly affect the
performance of the model. For instance, in the case of a denoising autoencoder, the level
of noise added to the input data and the strength of the denoising process are hyperpa-
rameters that can impact the model’s ability to remove noise and reconstruct the original
data [29].

The importance of hyperparameters in autoencoder models lies in their ability to
influence the performance and generalization capacity of the model. Selecting appropriate
hyperparameters can lead to better model accuracy and faster convergence. However,
the hyperparameter selection process can be challenging, and trial-and-error methods can
be time-consuming and computationally expensive [35]. One approach to address this
challenge is to use statistical methods such as ANOVA to determine the most important
hyperparameters and their optimal values. This approach can help reduce the search space
and improve the efficiency of training [36].

Each of the 240 trained autoencoder models (Table 1) underwent an evaluation to
assess their proficiency in reducing speckles while preserving features and details within
SAR images. The evaluation process employed various performance metrics, including
structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR), to quantitatively
measure the fidelity of noise-free images. This evaluation framework aimed to identify the
optimal configuration of autoencoder models, balancing speckle reduction.
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Table 1. Hyperparameter values for trained models.

Hyperparameter Values

Convolutional Layers [4, 6]
Filters [32, 64]
Activation Functions [‘relu’, ‘elu’]
Batch Size [2, 4, 8, 16, 32]
Loss [‘mse’, ‘bce’]
Learning Rate [0.001, 0.005, 0.01]

The comparison is conducted by examining the variation of different hyperparameters
during the training of the autoencoders to determine the optimal combination that achieves
maximum speckle reduction. The research aims to identify the configuration that not only
minimizes noise but also enhances the model’s ability to reconstruct the original image
accurately. This comparison allows for the exploration of the impact of each hyperparameter
on the performance and generalization ability of the autoencoder model, providing valuable
insights into the interplay between hyperparameter settings and the efficacy of speckle
reduction in SAR imagery.

3.3. Understanding Ablation

Ablation is a crucial tool in neural network research, allowing the critical components
of the network to be identified and its performance to be improved. This technique helps
understand how the network processes information and what features are crucial for
making accurate predictions. By gaining insight into the inner workings of the network,
adjustments can be made to improve its overall performance. Ablation also helps identify
unnecessary functions, leading to more efficient and optimized networks. This process
involves selectively removing or disabling specific components of the neural network and
observing the resulting changes in performance [37].

The process proposed in this paper by using ANOVA is a much deeper and complete
analysis than the ablation process, since it addresses the whole impact of all the hyperpa-
rameters and the modifications performed on the model, while the ablation consists of
eliminating or altering some parts of the model to measure its individual effects.

3.4. ANOVA Methodology

To begin a comparison of the 240 autoencoder models, an analysis of variance was
initiated, examining the performance variations among the different filtering architectures.
The analysis commenced with the formulation of the following hypotheses. The null
hypothesis (H0) stipulated that the average performance of all filtering architectures was
not different, while the alternative hypothesis (H1) proposed the existence of at least one
filtering architecture whose performance differed from the rest. This statistical approach
allowed for a examination of the efficacy of the autoencoder models, shedding light on the
impact of different filtering strategies on the denoising capabilities.

In statistics, the letter p is used to represent the p-value, which is a measure of evidence
against a null hypothesis in a statistical analysis. The p-value represents the probability
of obtaining a result as extreme as, or more extreme than, the observed data, assuming
that the null hypothesis is true. If it is less than a predefined threshold, the results are
considered statistically significant, suggesting that the null hypothesis is unlikely and
should be rejected in favor of the alternative hypothesis.

Mathematically, the p-value is commonly represented according to Equation (3):

p = P(X ≥ x | H0), (3)
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where X is a random variable representing the test statistic, x is the observed value of the
test statistic, and H0 is the null hypothesis. The p-value is interpreted as the probability of
obtaining a result as extreme as, or more extreme than, the observed data, assuming that
the null hypothesis is true.

The subsequent selection process focused on identifying the subset of models residing
on the Pareto frontier. The objective was to find the models that exhibited the most favorable
performance across multiple evaluation metrics. The initial strategy entailed identifying
the models characterized by the highest average performance across all the performance
metrics. This approach sought to pinpoint the models that demonstrated consistent and
robust performance, highlighting their potential as promising candidates for further in-
depth analysis and deployment in practical applications. By prioritizing the selection of
models based on their holistic performance profiles, the aim is to ascertain the most reliable
and high-performing configurations.

The Pareto frontier represents the set of all optimal solutions where no single objec-
tive can be improved without degrading at least one other objective. This fundamental
concept helped in identifying the trade-off between competing objectives and provided a
comprehensive understanding of the performance landscape of the various autoencoder
architectures under consideration.

3.5. Metrics for SAR Images

In order to measure the quality of an image and the presence of speckle on it, a com-
parison with respect to another one, there are several metrics widely used in the literature.

3.5.1. Mean Squared Error (MSE)

The MSE is a metric calculated of one complete image with respect to another one. Is
an operation that is performed pixel by pixel, by accumulating the error of the squared
difference between them. The MSE is calculated according to Equation (4).

MSE =
1
N

m−1

∑
i=0

n−1

∑
j=0

(Y(i, j)− Z(i, j))2, (4)

where Y(i, j) and Z(i, j) are the (i, j)− th pixels of images Y and Z, respectively, m is the
number of rows, n is the number of columns and N = m× n.

3.5.2. Structural Similarity Index (SSIM)

The SSIM is a metric used to assess the similarity between two images. It measures
the similarity in terms of luminance, contrast, and structure. The SSIM index is calculated
using Equation (5):

SSIM(x, y) =
(2µxµy + c1) · (2σxy + c2)

(µ2
x + µ2

y + c1) · (σ2
x + σ2

y + c2)
, (5)

where µx and µy are the average pixel values of images x and y, respectively, σx and σy are
the standard deviations of x and y, σxy is the covariance between x and y, and c1 and c2 are
constants to stabilize the division.

3.5.3. Peak Signal-to-Noise Ratio (PSNR)

The PSNR is a metric used to measure the quality of reconstruction of lossy compres-
sion codecs. It is defined as the ratio between the maximum possible power of a signal and
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the power of corrupting noise that affects the fidelity of its representation. The PSNR is
calculated using Equation (6):

PSNR = 10 · log10

(
MAX2

MSE

)
, (6)

where MAX is the maximum possible pixel value of the images and MSE is the mean
squared error between the two images.

3.5.4. Equivalent Number of Looks (ENL)

The ENL is calculated in a homogeneous region of 20× 20 pixels of the image. A value
of ENL = 1 is the worst scenario; a higher value means the most homogeneous (filtered)
region is the region measured. It is calculated according to Equation (7).

ENL =
µ2

σ2 , (7)

where µ is the mean intensity and σ is the standard deviation of all the pixels in the selected
homogeneous region.

According to these measurements, it is possible to compare the performance of a
despeckling process against another one proposed by other authors.

Evaluation metrics play a crucial role in assessing speckle reduction in SAR images.
These metrics, including MSE, SSIM, PSNR and ENL, offer valuable insights into image
quality. A lower MSE value closer to 0 signifies superior despeckling performance, indicat-
ing minimal error between the filtered and original images. SSIM, with values approaching
1, measures the similarity in luminance, contrast, and structure, highlighting high resem-
blance between the denoised and pristine images. Additionally, higher PSNR values denote
better reconstruction quality by quantifying the ratio between signal power and noise.
Similarly, ENL, reflecting higher values, signifies greater homogeneity in the filtered region.
These metrics collectively provide comprehensive assessments, emphasizing fidelity to the
original image, similarity, and noise reduction, crucial for effective SAR image analysis
and interpretation.

3.6. Proposed Method to Select the Best Model

In order to select a model M∗ among the subset of n optimal architectures, a heuristic
methodology, based on a systematic ranking of the performance metrics, was developed
(Algorithm 1).

In summary, the proposed methodology for systematically and efficiently tuning hy-
perparameters, as well as selecting the optimal model, is illustrated in Figure 4. The process
begins with the training and test datasets as inputs. The model is then trained and validated
using the specified metrics, which include both mean and standard deviation. Ultimately,
the Pareto frontier analysis, combined with score ranking, facilitates the identification of
the most suitable model.
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Algorithm 1 Proposed algorithm to select the best model M∗.

Input:
M = {Models ∈ Pareto frontier } //M is the set of best models
φ = {MSE, SSIM, PSNR, ENL} //φ is the set of metrics
wφ ∈ R4, 0 ≤ wi

φ ≤ 1, ∑i wi
φ = 1 //wφ is the set of metric weights

Output:
M∗ as the best model among the set of all models M
for each element of M do

for each element of φ do
φ̄(M)← avg(φ(M)) //The mean value of the metrics
Dφ̄(M)← std(φ(M)) //The mean standard deviation of the metrics

end for
end for
Rφ̄(M)← ranking(φ̄(M)) //The position of every M after sorting φ̄(M)
RDφ̄(M)← ranking(φ̄(M)) //The position of every M after sorting Dφ̄(M)
S(M) = ∑M wφ · (Rφ̄(M) +RDφ̄(M)) //The weighted scores of every model
M∗ = arg minM S(M) //The best model according to the minimal score

TrainingTraining
Set

Hyperparameters

Getting mean
metrics

Testing
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Search Paretto
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Figure 4. Summary of the proposed method.

4. Results
The results obtained from the evaluation of the pool of autoencoder models trained

for SAR image despeckling provide insights into their performance across image quality
metrics. This section presents a statistical analyses, Pareto frontier identification, confi-
dence intervals, and the determination of the most optimal model. Discovery of optimal
architectures residing on the Pareto frontier and their visual representation in scatter plots
and box plots is elucidated. Robustness of the confidence intervals and their impact on the
evaluation process is discussed, followed by a systematic ranking system and identification
of the most optimal autoencoder model.

4.1. ANOVA Analysis

Descriptive statistics in Table 2 of the metrics for these 240 models revealed average
MSE, SSIM, PSNR and ENL values of 1311.70, 0.603, 22.44, and 17.53, respectively. Moreover,
substantial variability was observed in these metrics, evidenced by the standard deviation,
highlighting diversity in model efficacy for noise reduction and preservation of SAR image
features. MSE values should be minimal, SSIM values closer to unity, and PSNR and ENL
values should be maximal, indicating higher effectiveness. Minimum and maximum values
observed in the descriptive statistics substantiate wide variations in model performance,
with a minimum MSE of 256.70 and maximum of 18,776.14. For SSIM, PSNR, and ENL,
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minimum values were 0.003, 5.42, and 0.00, respectively, while maximum values were 0.696,
24.40, and 33.51, underscoring diversity and disparities among the evaluated autoencoder
models. These results emphasize the importance of architectures and hyperparameter
configurations in SAR image despeckling processes, offering insights into the variability of
model performance.

Table 2. Descriptive statistics in the metrics for 240 models.

Descriptive
MSE
Mean

φ̄1

SSIM
Mean

φ̄2

PSNR
Mean

φ̄3

ENL
Mean

φ̄4

MSE
Std
Dφ̄1

SSIM
Std
Dφ̄2

PSNR
Std
Dφ̄3

ENL
Std
Dφ̄4

Count 240 240 240 240 240 240 240 240
Mean 1311.70 0.604 22.44 17.53 638.36 0.069 2.015 3.008
STD 3387.12 0.179 4.44 5.28 1642.39 0.027 0.437 1.017
Min 256.70 0.003 5.42 0.00 99.67 0.001 0.444 0.000
25% 276.89 0.640 23.56 18.14 122.59 0.048 1.740 2.857
50% 293.21 0.665 23.87 18.83 141.13 0.060 1.910 3.153
75% 324.02 0.679 24.10 19.50 179.79 0.090 2.192 3.571
Max 18776.13 0.696 24.40 33.51 6355.58 0.131 3.694 4.780

Statistical analysis results revealed evidence to support the differentiation among the
different autoencoder models. With the computed p-values for the MSE, SSIM, PSNR and
ENL, all indicating a value of 0.0, it was concluded that the differences in performance
were statistically significant. As the threshold for statistical significance was set at 0.05, the
obtained p-values falling below this value provided support for the rejection of the null
hypothesis. Consequently, the alternative hypothesis was accepted, indicating the presence
of at least one pair of models demonstrating distinct performances. With a confidence
level of 95%, the findings assert the variations in the denoising capabilities and overall
performance of the distinct autoencoder models, emphasizing the role of architecture and
hyperparameter configurations in the SAR image despeckling process.

Models 94 and 160 have been chosen among the pool of 240 trained models to ex-
emplify the outcomes achieved in SAR image denoising. These specific models serve as
representations showcasing the variance in performance within the autoencoder models.
Comparing these two models presents the differences in their abilities to reduce speckle
and preserve quality in SAR imagery. The performance comparison between Models 94
and 160 demonstrates stark differences in their efficacy. Model 94 exhibits lower mean
values across metrics MSE, SSIM, PSNR, and ENL compared to Model 160, indicating
poorer speckle reduction and less image fidelity. The standard deviation values, detailed in
Table 3, consistently reflect higher variability in Model 94 results across all metrics.

Model 94 is structured with six convolutional layers and 64 filters per layer, using
the ELU activation function and a batch size of 2. The model was trained with the binary
crossentropy loss function and a learning rate of 0.005. In contrast, Model 160 features
a four-layer convolutional architecture with 32 filters per layer, also employing the ELU
activation function, but with a batch size of 4. Like Model 94, it was trained with binary
crossentropy as the loss function and a learning rate of 0.005. These two models, with
their different layer configurations and filter sizes, show significant differences in their
performance metrics, particularly in terms of speckle reduction and image fidelity.
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Table 3. Comparison of Models 94 and 160.

Model 94 160

MSE mean [φ̄1] 2936.850 262.986
SSIM mean [φ̄2] 0.460 0.696
PSNR mean [φ̄3] 13.758 24.252
ENL mean [φ̄4] 12.830 18.085
MSE std [Dφ̄1 ] 837.174 106.816
SSIM std [Dφ̄2 ] 0.046 0.056
PSNR std [Dφ̄3 ] 2.043 1.652
ENL std [Dφ̄4 ] 2.404 2.851

Figure 5 illustrates the filtered SAR images obtained from Models 94 and 160, showcas-
ing their impact on speckle reduction. In the first column, the ground truth SAR image is
displayed, accompanied by a zoomed-in view of the selected region. In the second column,
the SAR image with speckle is presented, accompanied by a zoomed-in view. In the third
column, the SAR image filtered using Model 94 is presented, accompanied by a zoomed-in
view. Finally, the fourth column exhibits the SAR image filtered with Model 160, followed
by the zoomed-in view. This comparative visualization of the denoising effects of the two
models on SAR imagery highlights their varying abilities to mitigate speckle.

Figure 5. (a) Ground-truth. (b) Ground-truth zoom. (c) Noisy. (d) Noisy zoom. (e) Filtered M94.
(f) Filtered zoom M94. (g) Filtered M160. (h) Filtered zoom M160.

4.2. Pareto Frontier

A set of autoencoder architectures, capable of simultaneously optimizing perfor-
mance across the four metrics, was identified through experimentation. To accomplish this
multi-objective optimization task, we utilized the Multimodal Pareto Front Optimization
methodology. This approach facilitated the exploration of the Pareto frontier, enabling the
identification of solutions that achieved the best possible trade-offs among the competing
objectives. The Multimodal Pareto Front Optimization methodology allowed for a com-
prehensive analysis of the trade-offs between MSE, SSIM, PSNR and ENL, leading to the
discovery of a group of architectures that demonstrated superior performance across all
metrics. This method enabled the identification of the optimal architectures and provided
insights into the relationships between the different performance measures, shedding light
on the balance required to achieve denoising in SAR images.
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The Multimodal Pareto Front Optimization method is well suited when multiple,
potentially conflicting objectives need to be simultaneously optimized. It aims to identify a
set of solutions along the Pareto front that represents the trade-offs between these objectives.
In our case, the Pareto front captures the trade-offs between minimizing MSE, maximizing
SSIM, maximizing PSNR, and maximizing ENL values for the autoencoder architectures.
Through the application of this method, we successfully obtained a subset of architectures
that reside on the Pareto front and can be considered as prime candidates for further
analysis. These architectures have demonstrated their potential to achieve a balanced
trade-off between reconstruction quality (MSE, SSIM) and fidelity (PSNR, ENL) in the
context of SAR image despeckling.

The scatter plot in Figure 6 showcases the dispersion of metrics across different
autoencoder architectures trained for SAR image despeckling. In this visualization, red
points present the models positioned closest to the Pareto frontier, indicating their superior
performance between minimizing MSE while maximizing SSIM, PSNR and ENL values.
These models showcase their potential as candidates exhibiting enhanced performance in
SAR image despeckling.

Figure 6. Scatter plot of metrics with Pareto Frontier models highlighted.

Table 4 includes a subset of the optimal autoencoder architectures comprising the
Pareto frontier. This subset includes 17 distinct models, each characterized by specific
configurations of convolutional layers, filter sizes, activation functions, batch sizes, loss
functions, and learning rates. The architectures showcased in the table exemplify the
combinations of hyperparameters that have demonstrated superior performance across
evaluation metrics. These architectures represent promising candidates for exploration in
SAR image despeckling applications.
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Table 4. Autoencoder architectures belonging to the Pareto front.

Model Conv
Layers Filters Activation Batch

Size Loss Learning
Rate

0 6 32 relu 2 mse 0.001
13 6 32 relu 8 mse 0.005
30 6 32 elu 2 mse 0.001
36 6 32 elu 4 mse 0.001
60 6 64 relu 2 mse 0.001
66 6 64 relu 4 mse 0.001
69 6 64 relu 4 bce 0.001
72 6 64 relu 8 mse 0.001
112 6 64 elu 16 bce 0.005
123 4 32 relu 2 bce 0.001
153 4 32 elu 2 bce 0.001
160 4 32 elu 4 bce 0.005
166 4 32 elu 8 bce 0.005
180 4 64 relu 2 mse 0.001
183 4 64 relu 2 bce 0.001
213 4 64 elu 2 bce 0.001
232 4 64 elu 16 bce 0.005

Table 5 presents a overview of the performance metrics associated with 17 autoencoder
models situated on the Pareto front. These metrics serve as indicators of the image quality
enhancement capabilities of the evaluated models. The table allows for a comparison of the
relative performance of the models based on their respective metrics, providing insights
into their potential for reducing image noise.

Table 5. Metric results for optimum models.

Model MSE Mean
[φ̄1]

SSIM Mean
[φ̄2]

PSNR Mean
[φ̄3]

ENL Mean
[φ̄4]

0 290.423 0.687 23.883 19.500
13 290.399 0.653 23.810 20.758
30 258.975 0.680 24.353 19.524
36 258.077 0.676 24.391 19.193
60 258.506 0.670 24.401 20.507
66 262.700 0.670 24.299 20.574
69 290.987 0.662 23.838 20.902
72 260.597 0.679 24.372 20.298
112 260.007 0.680 24.399 19.061
123 260.631 0.693 24.325 18.653
153 264.949 0.696 24.195 18.119
160 262.986 0.696 24.252 18.085
166 264.689 0.695 24.216 18.272
180 256.701 0.690 24.352 19.376
183 261.251 0.692 24.340 19.446
213 269.763 0.693 24.156 18.319
232 280.138 0.694 24.002 18.437

The set of 17 optimal models revealed insights into their performance based on used
metrics. The MSE values ranged from 290.42 to 256.70, indicating different levels of re-
construction accuracy achieved by the models. The SSIM varied from 0.653 to 0.696,
highlighting the diversity in the preservation of structural information between the recon-
structed and original images. The PSNR values spanned from 23.88 to 24.40, reflecting the
models abilities to minimize noise and retain image fidelity. Finally, the ENL values ranged
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from 19.50 to 18.07, demonstrating variations in the effectiveness of speckle reduction
among the optimal models.

The box plot visual representation of the 17 autoencoder models on the Pareto front
presents the variability in the performance metrics of these models (Figure 7). The plot
reveals a consistency in the metrics across the 17 models, suggesting a level of uniformity
in their image enhancement capabilities. The closely clustered box plots indicate that the
models demonstrate similar levels of performance in terms of MSE, SSIM, PSNR and ENL
in reducing speckle and improving the overall quality of the processed images.

Figure 7. Box plot of metrics for 17 optimum models.

After reevaluating the p-values for the 17 models identified as optimal following
the ANOVA analysis, the obtained results are as follows. The p-value for MSE is 0.334,
indicating no significant difference among the models in terms of MSE. However, for SSIM
and ENL, the p-values are extremely small, approximately 2.4 × 10−14 and 2.9 × 10−16,
respectively. These values present evidence against the null hypothesis, suggesting sub-
stantial differences between the models concerning SSIM and ENL. Concerning PSNR, the
obtained p-value is 0.137, indicating no significant difference among the models. These
findings highlight the importance of SSIM and ENL, showcasing clear disparities among
the models, implying that some models perform significantly better in preserving structural
similarity and homogeneity in filtered SAR images compared to others.
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4.3. Confidence Intervals

The use of confidence intervals aids in the assessment of the variability and precision of
the estimated population parameters, enabling us to make inferences about the effectiveness
of different models in denoising SAR imagery. By incorporating confidence intervals in
the ANOVA analysis, it can identify the range of plausible values for the means of the
evaluated metrics, facilitating a comparison of the performance of various autoencoder
architectures. Additionally, the insights garnered from the confidence intervals enable the
identification of statistically significant differences in the performance of different models,
providing a reliable basis for selecting the most effective autoencoder configuration.

Mean Squared Error (MSE)—The confidence intervals indicate that the true population
mean of the reconstruction error is expected to lie between 238.94 and 312.37, with a margin
of error of 19.10. This suggests notable variability in the performance of the autoencoder
models, emphasizing the need for further optimization to minimize the error range and
improve the accuracy of the reconstructed images (Figure 8).

Figure 8. Confidence interval of MSE.

Structural Similarity Index (SSIM)—The confidence intervals for the SSIM range from
0.64 to 0.71, with a small error of 0.008, indicating a relatively precise estimate of the
population SSIM index. These results suggest that the selected autoencoder models are
effective in preserving the structural information of the images, ensuring minimal loss of
details during the denoising process (Figure 9).

Figure 9. Confidence interval of SSIM.

Peak Signal-to-Noise Ratio (PSNR)—The narrow confidence interval range of 23.54 to
24.71, with an error of 0.29, highlights the accuracy of the reconstructed images compared
to the original data. These results underscore the efficiency of the models in maintaining
the image quality and minimizing the signal distortion caused by speckle (Figure 10).
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Figure 10. Confidence interval of PSNR.

Equivalent Number of Looks (ENL)—The confidence intervals for ENL range from
17.61 to 21.60, with an error of 0.60, indicating moderate variability in the estimated ENL
values. These results suggest that the selected autoencoder models effectively reduce
speckle within this range, demonstrating their capability in improving the quality of SAR
images (Figure 11).

Figure 11. Confidence interval of ENL.

The analysis of the confidence intervals for the metrics underscores the trade-offs and
interdependencies between various performance indicators. While the models showcase a
considerable range of performance variations, it is evident that the selected autoencoder
architectures have demonstrated a capacity to effectively reduce speckle while preserving
essential image details. The wide confidence intervals for MSE and ENL present the need
for further fine-tuning and optimization to minimize the reconstruction error and enhance
the noise reduction capabilities. The narrow confidence intervals for SSIM and PSNR reflect
the models’ success in maintaining structural information and minimizing signal distortion,
illustrating their robustness in preserving the overall image quality. These insights not only
reinforce the efficacy of the chosen models in mitigating speckle but also provide directions
for refining the autoencoder architectures to achieve superior performance.

4.4. The Best Model

The process of selecting the most optimal SAR image denoising autoencoder model
from the pool of 17 preselected models involved a systematic ranking system based on
evaluation metrics. Each metric, MSE, SSIM, PSNR and ENL, was utilized to establish a
scoring position for every model. For MSE, the models were arranged in ascending order
based on their performance, with the lowest MSE value (Table 6) assigned to position 1
and consecutively numbered up to 17, representing the least efficient model in this metric.
Conversely, for SSIM, PSNR, and ENL, which exhibit superior performance with higher
values, the models were ranked in descending order, assigning position 1 to the model
with the highest score in each metric. This methodology proposed in Section 3.6 and its
Algorithm 1 allowed for the creation of a comprehensive table presenting the positions
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of all 17 models across the four evaluation metrics, enabling a clear delineation of each
model’s relative performance for these evaluation criteria.

Table 6. Performance positions for MSE.

Model MSE Mean [φ̄1] MSE Mean Ranking [Rφ̄1]

180 256.701 1
36 258.077 2
60 258.506 3
30 258.975 4
112 260.007 5
72 260.597 6
123 260.631 7
183 261.251 8
66 262.700 9
160 262.986 10
166 264.689 11
153 264.949 12
213 269.763 13
232 280.138 14
13 290.399 15
0 290.423 16

69 290.987 17

After establishing the individual performance positions of the 17 autoencoder models
across each of the four metrics, an assessment of their collective performance was conducted
by summing up the positions acquired by each model across these metrics. This summation
approach aggregates the positional ranks obtained by each model for metrics such as MSE,
SSIM, PSNR and ENL. For example, in Table 7, consider Model 60; it secured position 3
for MSE, position 14 for SSIM, position 1 for PSNR and position 4 for ENL, resulting in a
cumulative position total of 22 across all metrics. This cumulative position total serves as an
amalgamated performance measure across multiple evaluation criteria. Lower cumulative
position totals imply a superior and well-rounded performance across all metrics. Thus, the
model with the lowest cumulative position total emerges as the prime candidate exhibiting
the most robust and balanced performance across the spectrum of evaluation metrics.

The procedure of scoring by position based on standard deviations is reiterated to
further assess the consistency of performance of the 17 pre-selected autoencoder models
across all evaluation metrics. This approach, akin to the prior methodology utilized
with mean values, involves assigning positions based on the standard deviations of the
evaluation metrics. For instance, Model 180 showcases a total positional value for the
arithmetic mean of metrics at 24 and a total positional value for the standard deviation of
metrics at 29, as depicted in Table 8. These cumulative positional values, indicating both
mean and standard deviation assessments, are combined to establish a definitive overall
total value. The objective is to identify the most optimal model, evident through the model
achieving the lowest total sum of positional values.
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Table 7. Metric performance position and total cumulative position.

Model
MSE Mean

Ranking
Rφ̄1

SSIM Mean
Ranking
Rφ̄2

PSNR Mean
Ranking
Rφ̄3

ENL Mean
Ranking
Rφ̄4

Total Mean
Score

60 3 14 1 4 22
180 1 8 6 9 24
30 4 11 5 6 26
72 6 12 4 5 27
36 2 13 3 10 28
112 5 10 2 11 28
183 8 7 7 8 30
123 7 6 8 12 33
66 9 15 9 3 36
160 10 1 10 17 38
166 11 3 11 15 40
153 12 2 12 16 42
213 13 5 13 14 45
232 14 4 14 13 45

0 16 9 15 7 47
69 17 16 16 1 50
13 15 17 17 2 51

Table 8. Total positions of mean and standard deviation.

Model Total Mean Score Total Std Score Total Score [S(M)]

180 24 29 53
153 42 12 54
166 40 20 60
160 38 24 62
123 33 30 63
30 26 40 66
72 27 44 71
36 28 44 72
183 30 42 72
213 45 27 72
112 28 45 73
232 45 30 75
60 22 54 76
66 36 40 76
13 51 39 90
69 50 41 91
0 47 51 98

The analysis identifies Model 180 as the most optimal autoencoder architecture, show-
casing a total positional value of 53. This evaluation integrates both mean and standard
deviation positional assessments across the four evaluation metrics. This model exhibits
superior consistency, achieving a lower total sum of positional values across the spectrum
of evaluation criteria. Model 180 stands out as the most promising candidate among the
17 pre-selected autoencoder models, displaying proficiency in optimizing performance in
SAR image despeckling.

The results illustrated in Figure 12 display the outcomes achieved by Model 180 with
the minimal S(M) = 53. The images are organized in columns, presenting an image with
its corresponding zoomed-in region selected within the box. The first column exhibits
the ground truth images devoid of speckle. The second column presents images affected
by speckle. Finally, the third column demonstrates the filtered images produced by the
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selected autoencoder model. This visualization enables a full comparison, highlighting
Model 180’s ability to denoise speckle images.

Figure 12. (a) Ground-truth. (b) Ground-truth zoom. (c) Noisy. (d) Noisy zoom. (e) Filtered M180.
(f) Filtered zoom M180.

Visual analysis of the images generated by Models 0, 36 and 180 provides information
on their respective performances, particularly when ranked from the positions of the least
favorable Model 0 to the intermediate Model 36 and the most favorable Model 180 according
to the classification system. Examining Figure 13, it is evident that Model 180, positioned
as the top-ranking model, exhibits a commendable reduction in mottling, positioning itself
as a strong candidate for best model. In particular, images generated by Model 180 show
a significant improvement in image quality, effectively suppressing unwanted speckle
artifacts. However, it is essential to recognize that both Model 0, the lowest ranked model,
and Model 36, the middle ranked model, also demonstrate considerable reductions in
speckle levels in SAR images. While visual analysis positions Model 180 as a potential
optimal choice, the competent noise removal performance of Models 0 and 36 highlights
their effectiveness in mitigating speckle.

Figure 13. (a) Ground-truth. (b) Ground-truth zoom. (c) Noisy. (d) Noisy zoom. (e) Filtered
M0. (f) Filtered zoom M0. (g) Filtered M36. (h) Filtered zoom M36. (i) Filtered M180. (j) Filtered
zoom M180.
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Notably, Model 180, positioned at the top across all metrics in Table 7, attains the lowest
MSE (1), highest SSIM (8), considerable PSNR (6), and superior ENL (9). This consistently
high ranking suggests that Model 180 excels in minimizing pixel-wise errors, preserving
structural information, enhancing signal quality, and maintaining a high equivalent number
of looks in the images, indicating its visual superiority. Conversely, Model 36, occupying
the intermediate position, displays moderately higher positions across MSE (2), SSIM
(13), PSNR (3), and ENL (10). While not surpassing Model 180, Model 36 still showcases
commendable performance, positioning itself as a competitive choice with perceptually
pleasing results. Finally, Model 0, situated at the lowest rank, exhibits the highest positions
across MSE (16), SSIM (9), PSNR (15), and the lowest ENL (7). These results signify increased
pixel-wise errors, lower structural similarity, reduced signal quality, and a diminished
equivalent number of looks in comparison to the other models.

The consistent pattern of Model 180 outperforming both Model 36 and Model 0 across
all metrics underscores its visual superiority. The intermediate performance of Model 36
suggests a satisfactory compromise, while the lowest-ranking Model 0 indicates suboptimal
outcomes in terms of image analysis metrics. These quantitative findings align with the
visual observations, reinforcing the efficacy of the ranking system and providing insights
into the models’ performance for image denoising.

5. Discussion and Future Work
This section provides an analysis of the results obtained from the autoencoder mod-

els trained for SAR image despeckling. This section first discusses the key findings and
insights derived from the evaluation of the models, followed by an exploration of potential
improvements and directions for future research. The subsections that follow delve into
the significance of the results, the advantages of the proposed methodology, and the oppor-
tunities for advancing this area of study through continued innovation and refinement.

5.1. Discussion of Results

The results of this study provide valuable insights into the effectiveness of autoen-
coders for speckle reduction in Synthetic Aperture Radar (SAR) images. The use of
240 distinct autoencoder models, each trained with different combinations of hyperpa-
rameters, allowed for a comprehensive evaluation of their performance across multiple
image quality metrics, such as MSE, SSIM, PSNR, and ENL.

The significant variability observed in the performance of the different models under-
scores the complexity of SAR image despeckling. While all models demonstrated some
level of speckle reduction, the models selected based on the Pareto frontier achieved the
best trade-offs between noise reduction and image fidelity. Specifically, the results revealed
that models with lower MSE values also tended to have higher SSIM, PSNR, and ENL
values, indicating better preservation of image features and overall image quality. This
highlights the delicate balance between reducing speckle and maintaining the essential
spatial information in SAR images, which is critical for downstream analysis.

The role of hyperparameter selection was crucial in determining the performance of
the models. As shown by the ANOVA analysis, certain configurations of hyperparame-
ters—such as the number of convolutional layers, the choice of activation function, and
the learning rate—had a significant impact on the models’ ability to reduce speckle and
preserve structural information. The wide range of performance outcomes, from models
with MSE values as low as 256.70 to those as high as 18,776.14, suggests that careful tuning
of these hyperparameters is essential for optimizing autoencoder performance in SAR
image processing.
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One of the key findings of this study was the identification of the Pareto frontier,
which served as a useful method for selecting models that exhibited the best performance
across multiple objectives. The models residing on the Pareto frontier demonstrated
superior overall performance, providing a set of promising candidates for further analysis
and application. This approach not only helped in identifying the most optimal models
but also revealed the inherent trade-offs between competing performance metrics, such
as minimizing MSE while maximizing SSIM and PSNR. These trade-offs are crucial for
practical applications, where different performance criteria may be prioritized depending
on the specific goals of the task at hand.

The evaluation using a diverse set of 240 models allowed for a deep exploration of
model performance and the identification of configurations that can generalize well across
various SAR images. However, as the study was based on a single SAR dataset, further
research should focus on testing the models on a wider variety of datasets to ensure their
robustness in different operational contexts. This would also allow for the refinement of the
models, improving their ability to generalize across different terrains, weather conditions,
and acquisition scenarios.

The presence of outliers in the box plot graph represents models that exhibit perfor-
mance significantly outside the expected range. In this case, the values outside of the range
correspond to suboptimal models that fail to achieve optimal speckle reduction or image
fidelity. These outliers may result from particular hyperparameter configurations that are
not well suited for the task or models that struggle with specific data characteristics. The
ratio of outliers is relatively low, indicating that the majority of models perform within
the expected range. The impact of these suboptimal models on the overall denoising
results is minimal, but their presence highlights the need for careful optimization of the
hyperparameters to avoid configurations that lead to poor performance. These outliers
reinforce the importance of fine-tuning the models to ensure consistent and high-quality
denoising across all configurations.

5.2. Comparison with State-of-the-Art Algorithms

In the field of SAR image despeckling, several advanced algorithms have been de-
veloped to address the challenges posed by speckle noise while preserving the important
features of the images. Among these, deep learning-based methods have gained significant
attention due to their ability to learn complex patterns and handle noisy data effectively [8].
Specifically, CNN architectures [38] such as U-Net [12,39–41] and DeSpeckNet [13] have
shown promise in reducing speckle noise while retaining high levels of image fidelity.

Compared to these state-of-the-art algorithms, the methodology proposed in this
study presents a distinctive advantage by introducing analysis of variance (ANOVA) as
a systematic and statistical approach for hyperparameter optimization in autoencoders.
Unlike traditional methods that rely on trial-and-error techniques or heuristic approaches,
ANOVA allows for a more precise selection of optimal hyperparameters, leading to im-
proved model performance and efficiency in speckle reduction. This novel combination
of ANOVA with deep learning models distinguishes this approach from other existing
methods in the literature.

Additionally, while U-Net and DeSpeckNet utilize convolutional layers and skip
connections for feature preservation during noise removal, the proposed methodology
leverages Pareto frontier optimization, allowing for a balanced selection of models based
on multiple performance metrics such as MSE, SSIM, PSNR, and ENL. This multi-objective
evaluation provides a more comprehensive assessment of model performance compared to
single-metric evaluations typically employed in state-of-the-art methods.
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Furthermore, previous deep learning methods for SAR despeckling have often been
limited by the size and quality of available datasets. In contrast, the approach presented in
this study utilizes a large-scale dataset of 240 distinct models, each trained with varying
hyperparameter configurations, ensuring a more robust and generalized solution to speckle
reduction. This extensive training and evaluation across a diverse set of models contribute
to the overall effectiveness of the proposed methodology in real-world applications.

By comparing the performance of this method with these leading algorithms, the study
demonstrates that it not only achieves competitive results in terms of speckle reduction
but also offers unique benefits in terms of model optimization, multi-objective evaluation,
and robustness. These advantages position the proposed methodology as a promising
alternative for advanced SAR image processing tasks.

5.3. Novelty of the Research

This study introduces an innovative approach by applying analysis of variance for
hyperparameter optimization in autoencoders used for speckle reduction in SAR images.
Unlike traditional methods that rely on heuristic or trial-and-error techniques, ANOVA
systematically selects the optimal hyperparameters, significantly improving the precision
and efficiency of the model optimization process. This application of ANOVA within the
context of deep learning for SAR image processing is a novel contribution that enhances
the rigor of model selection.

Additionally, the combination of advanced image quality metrics such as MSE, SSIM,
PSNR, and ENL, alongside the identification of the Pareto frontier for model evaluation,
provides a comprehensive and quantitative framework for assessing model performance.
This approach not only highlights the autoencoders’ capability to reduce speckle but also
their ability to preserve essential image features, which is crucial for SAR image analysis.

Furthermore, this research distinguishes itself by the extensive training of 240 different
models, each with a distinct combination of hyperparameters. This large-scale evaluation
provides a robust foundation for identifying the best-performing autoencoders, offering a
level of depth not commonly seen in the existing literature on SAR image despeckling. The
exhaustive nature of this study and the diversity of configurations explored are key factors
that contribute to its originality.

The methodology presented here is not only focused on noise reduction but also on the
systematic optimization of models through a defined, measurable process. The novel com-
bination of ANOVA for hyperparameter tuning, Pareto frontier optimization, and extensive
model training and evaluation provides a unique and rigorous methodology for SAR image
despeckling, offering valuable insights into model performance and optimization that have
not been previously explored in such detail within this domain.

5.4. Future Work

Building on the results presented in this study, several directions for future work can
be pursued to further enhance SAR image despeckling and expand the application of deep
learning techniques in this field.

While the current study focused on autoencoders, future research could explore other
deep learning architectures, such as Generative Adversarial Networks (GANs), which
have shown promise in image denoising tasks. Investigating the integration of GANs with
autoencoders for SAR image despeckling could lead to improved noise reduction while
maintaining image fidelity. Additionally, attention mechanisms and transformer-based
models could be examined to capture more complex spatial relationships in SAR images.

The study used single-polarization data for training and evaluation. Future work
could extend this approach to incorporate multi-temporal and multi-polarization SAR
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data, which are widely available and contain rich information for more accurate speckle
reduction and change detection. This would enhance the generalization capability of
the models and provide a more robust solution for real-world SAR image processing,
particularly in dynamic environments.

Although ANOVA provided valuable insights for hyperparameter optimization, al-
ternative optimization techniques such as Bayesian Optimization or Genetic Algorithms
could be explored to further fine-tune model parameters. These methods may offer more
efficient solutions by intelligently exploring the hyperparameter space, potentially leading
to even better performance in speckle reduction.

6. Conclusions
The ANOVA analysis of various autoencoder models for SAR image despeckling em-

phasized the role of different filtering architectures in influencing the denoising capabilities
and overall model performance. The results highlighted performance variations among the
models, underlining the importance of architecture and hyperparameter configurations.
The selection process focuses on identifying models on the Pareto frontier based on the best
performance across multiple metrics. These findings emphasize the potential of advanced
autoencoder models in significantly enhancing the efficiency and effectiveness of SAR
image despeckling.

A subset of autoencoder architectures from the Pareto front demonstrated the ability
to balance trade-offs between image quality metrics, achieving denoising while preserving
fidelity. The wide range of MSE, SSIM, PSNR, and ENL values among the 17 optimal
models provides valuable insights into performance characteristics and informs future
image processing advancements.

Integrating confidence intervals into the ANOVA analysis was key to assessing the
variability and precision of the models. Wide confidence intervals for MSE and ENL
highlight the need for further optimization, while narrow confidence intervals for SSIM
and PSNR confirm the models’ effectiveness in preserving structural information and
minimizing signal distortion. These findings underscore the importance of leveraging
confidence intervals for informed decisions and refining autoencoder architectures for
improved SAR image denoising.
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Abbreviations
The following abbreviations are used in this manuscript:
SAR Synthetic Aperture Radar
MSE Mean Squared Error
SSIM Structural Similarity Index
PSNR Peak Signal-to-Noise Ratio
PFOM Pratt’s Figure Of Merit
CNN Convolutional Neural Network
DL Deep Learning
AE Auto Encoder
GRD Ground Range Detected
VV Vertical Vertical
VH Vertical Horizontal
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