Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/135470
Título: Neural network modelling of kinematic and dynamic features for signature verification
Autores/as: Diaz, Moises 
Ferrer, Miguel A. 
Quintana, Jose J. 
Wolniakowski, Adam
Trochimczuk, Roman
Miatliuk, Kanstantsin
Castellano, Giovanna
Vessio, Gennaro
Palabras clave: Prediction
Ur5 Robotic Arm
Neural Networks
Kinematic And Dynamic Features
Signature Verification
Fecha de publicación: 2025
Publicación seriada: Pattern Recognition Letters 
Resumen: Online signature parameters, which are based on human characteristics, broaden the applicability of an automatic signature verifier. Although kinematic and dynamic features have previously been suggested, accurately measuring features such as arm and forearm torques remains challenging. We present two approaches for estimating angular velocities, angular positions, and force torques. The first approach involves using a physical UR5e robotic arm to reproduce a signature while capturing those parameters over time. The second method, a cost-effective approach, uses a neural network to estimate the same parameters. Our findings demonstrate that a simple neural network model can extract effective parameters for signature verification. Training the neural network with the MCYT300 dataset and cross-validating with other databases, namely, BiosecurID, Visual, Blind, OnOffSigDevanagari-75 and OnOffSigBengali-75 confirm the model's generalization capability. The trained model is available at: https://github.com/gvessio/SignatureKinematics.
URI: http://hdl.handle.net/10553/135470
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2024.11.021
Fuente: Pattern Recognition Letters[ISSN 0167-8655],v. 187, p. 130-136, (Enero 2025)
Colección:Artículos
Vista completa

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 30-mar-2025

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.