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A B S T R A C T

Online signature parameters, which are based on human characteristics, broaden the applicability of an auto-
matic signature verifier. Although kinematic and dynamic features have previously been suggested, accurately
measuring features such as arm and forearm torques remains challenging. We present two approaches for
estimating angular velocities, angular positions, and force torques. The first approach involves using a physical
UR5e robotic arm to reproduce a signature while capturing those parameters over time. The second method,
a cost-effective approach, uses a neural network to estimate the same parameters. Our findings demonstrate
that a simple neural network model can extract effective parameters for signature verification. Training the
neural network with the MCYT300 dataset and cross-validating with other databases, namely, BiosecurID,
Visual, Blind, OnOffSigDevanagari-75 and OnOffSigBengali-75 confirm the model’s generalization capability.
The trained model is available at: https://github.com/gvessio/SignatureKinematics.
1. Introduction

An online signature is typically represented by the parametric equa-
tions of its trajectory, denoted as (𝑥(𝑡), 𝑦(𝑡)), which are captured when
the signing tool contacts the digital surface. Additionally, some digitiz-
ers capture other function-based parameters, such as the vertical pres-
sure exerted by the pen tip, azimuthal and altitude angles of the pen,
and even the pen’s in-air trajectory. As a physiological biometric trait, a
signature is used in various applications, including access control, com-
mercial transactions, document forgery detection, and the provision of
evidence in legal scenarios such as the verification of last wills [1].
In biometrics, where impostors may attempt to forge signatures with
varying degrees of skill, robust verification methods are crucial.

Since the execution of a signature inherently involves movements of
the hand, arm, and forearm, it is hypothesized that these motions may
contain kinematic and dynamic unique characteristic of the signer [2].
From a kinematic perspective, this action can be characterized by the
arm’s angular position, 𝜃(𝑡), and angular velocity, 𝜔(𝑡). Dynamically,
these movements are facilitated by force torques, 𝜏(𝑡), applied at the
joints.
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One method used to obtain this valuable biomechanical information
involves a physical robot programmed to mimic the act of signing.
While a robot’s ability to accurately replicate these movements depends
on its configuration, working area, and degrees of freedom, it can
effectively capture kinematic and dynamic features during the process.
However, accessing these robots is costly and cumbersome.

To improve access to robotic features, our contributions are:

• The angular positions, 𝜃𝑟(𝑡) ∈
(

𝜃1(𝑡),… , 𝜃6(𝑡)
)

, angular velocities,
𝜔𝑟(𝑡) ∈

(

𝜔1(𝑡),… , 𝜔6(𝑡)
)

, and force torques, 𝜏𝑟(𝑡) ∈
(

𝜏1(𝑡),… , 𝜏6(𝑡)
)

of a UR5e robotic were recorded during the execution of the
16,500 online signatures from the MCYT330 dataset (DS1).

• We trained a multilayer perceptron (MLP)-based neural network
to estimate the kinematic and dynamic features

(

�̂�(𝑡), �̂�(𝑡), ̂𝜏(𝑡)) by
taking the trajectory of a signature (𝑥(𝑡), 𝑦(𝑡)) as input.

• We conducted a two-fold experiment: first, we assessed the MLP’s
estimation capacity, and secondly, we compared the performance
of features generated by the UR5e robot against those produced
by the MLP in a dynamic time warping (DTW)-based automatic
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Fig. 1. Overview of the proposed method.

signature verifier (ASV). Additionally, we demonstrated the neu-
ral network’s generalization capability by estimating effective
kinematic and dynamic features in five third-party databases,
namely, BiosecurID (DS2), Visual (DS3), Blind (DS4), OnOffSig-
Devanagari-75 (DS5) and OnOffSigBengali-75 (DS6).

Fig. 1 illustrates the methodology employed in this study. The
trained MLP model is publicly available for research and practical
applications.

The rest of this paper is organized as follows. Section 2 reviews prior
work. Section 3 details the proposed method. Section 4 presents the
signature verification experiments conducted. Section 5 concludes the
article.

2. Related work

2.1. Robots replicating human writing trajectories

Various robotic arms have been developed to replicate human writ-
ing trajectories, drawing significant interest from the art world and
at technical exhibitions. For example, the Paul planar robotic arm is
designed to create artistic, human-like drawings on traditional media
such as pen and paper [3]. Additionally, two-dimensional plotters such
as Line-us and iDraw have become increasingly popular for automated
writing tasks, demonstrating their ability to produce physically forged
trajectories, as noted in [4]. Contrastingly, NAO robots serve a different
functional purpose. These robots have been programmed effectively in
various educational studies to assist children in enhancing their callig-
raphy skills, blending robotics with pedagogy [5]. Similarly, the UR5e
robot, known for its precision and versatility, has been demonstrated
to accurately replicate the trajectory and velocity of human signatures,
making it a valuable tool in signature verification research [6]. We have
also used UR5e in this work to further explore its application.

2.2. Machine learning to estimate function-based features

Recent advances in machine learning, particularly with neural net-
works, have significantly improved the analysis of function-based fea-
tures across various domains, including biometrics and robotics. These
131 
models are especially effective in handling data characterized by com-
plex temporal sequences and variability between executions. For in-
stance, Recurrent Neural Networks have been widely applied to model
time-dependent data across diverse fields, ranging from financial fore-
casting to motion analysis [7–9]. In biometrics, the predictive power of
a hybrid CNN-GRU network has been used to effectively distinguish be-
tween Parkinsonian and healthy handwriting [10]. A similar approach
has been used in robotics to estimate object trajectories for robot ma-
nipulation [11]. In this paper, however, we preferred a simple approach
based on an MLP and a sliding window over features. Our goal was not
specifically to advance state-of-the-art sequence modelling, but rather,
to develop a model robust enough to estimate kinematics and dynamics
effectively and apply them across different datasets.

2.3. Robotic features in signature verification

One advantage of our work is the estimation of robotic features
based on the movement of the UR5e robotic arm when signing, which
represents a novel approach in comparison to recent studies [12]. This
method leverages real-world robotic data to enhance feature extraction,
offering a novel perspective in the field. However, a limitation of our
approach is that it relies on a single robot for all signature data. This
means our method does not account for individual variations in arm
and forearm anatomy among different writers, a factor not captured in
the signature datasets.

Robotic features are increasingly being investigated in the context of
signature verification to enhance the security capabilities of automatic
verification systems. In [13], the authors explored the complexities of
inter-joint motion in hand skeleton movements, which are challenging
to reproduce. Their research focused on replay attacks involving a
robotic hand replicating an in-air signature, highlighting the difficulties
in accurately simulating human hand dynamics. Further studies have
analysed the kinematics of a virtual skeleton arm during the signature
execution process. An IRB120 ABB robotic model aimed at examining
the angular position of the joints was used in [2], demonstrating
significant improvements in signature verification performance through
precise emulation of joint movements.

Investigations carried out thus far have primarily focused on de-
scribing the motion of joints, but information about the forces causing
these movements has not been extensively explored. In the present
work, we introduce the application of torque measurements, a novel
approach that considers the force torques required to execute joint
rotations in real robots during signature execution. Previous stud-
ies [14,15] introduced the concept of torques, which are derived from
the geometric properties of written trajectories, to this field. In this
article, torques refer specifically to the force torques required to execute
rotations in the joints of real robots for signature execution.

Although features extracted from digitizers [16] or engineered fea-
tures such as curvature and torsion values [17] are well-established,
the features proposed in this work introduce a novel feature space in
the field of signature verification.

3. Proposed method

Our method aims to estimate the kinematic and dynamic features
of a signature, as depicted in Fig. 1. First, we use the UR5e robotic arm
to extract these features from signatures. Then, the features are used to
train an MLP neural network. Once its weights are adjusted, the MLP is
used to estimate these features from the trajectory of a new signature.

3.1. Kinematic and dynamic features with the robotic arm

We utilized the Universal Robots UR5e anthropomorphic robot arm1

as the platform for replicating signatures and acquiring kinematic and

1 https://www.universal-robots.com/products/ur5-robot/.

https://www.universal-robots.com/products/ur5-robot/
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dynamic features. The UR5e is commonly employed in industrial and
ervice tasks requiring human collaboration. This robot arm can lift
ayloads of up to 5 kg, extend to a maximum reach of 850 mm, and
perate with 6 degrees of freedom, enabling precise positioning of the
nd effector in any desired orientation and position.

The Forward Kinematics (FK) of the robotic kinetic chain was
odelled using Denavit–Hartenberg (D–H) parameters [18]. These pa-

ameters define the relative positioning of consecutive elements within
he chain. The relative poses between the frames of reference attached

to the subsequent (𝑖 − 1)-th and 𝑖th links of the robot can be derived
using the D–H parameters through four atomic movements:
𝑖−1
𝑖 𝑻 = 𝐓𝐫 𝐨𝐭𝐳(𝜃𝑖)𝐓𝐭 𝐫 𝐚𝐧𝐬𝐥𝐳(𝑑𝑖) ⋅ 𝐓𝐭 𝐫 𝐚𝐧𝐬𝐥𝐱(𝑎𝑖)𝐓𝐫 𝐨𝐭𝐱(𝛼𝑖), (1)

where 𝐓𝐫 𝐨𝐭 and 𝐓𝐭 𝐫 𝐚𝐧𝐬𝐥 represent rotation and translation transforma-
tions around the 𝑧 and 𝑥 axes [19].

The full FK model of the UR5e arm can, therefore, be expressed as
follows:

𝑏
𝑒𝑻 =

6
∏

𝑖=1

𝑖−1
𝑖 𝑻 (𝑎𝑖, 𝛼𝑖, 𝑑𝑖, 𝜃𝑖), (2)

where 𝑏 denotes the base frame of the arm, while 𝑒 is the end frame.
The FK model of the robot calculates the pose of the end effector given
the robot’s configuration vector 𝜽𝑟(𝑡) = [𝜃1(𝑡), … , 𝜃6(𝑡)]. Conversely, the
Inverse Kinematics (IK) [20] involves determining the robot configura-
tion 𝜽 when 𝑏

𝑒𝑇 is given. We used the analytical model for the FK and
he numerical solution for the IK.

Determining the joint torques 𝝉 needed to achieve the desired
rajectory profile [𝜃(𝑡), �̇�(𝑡), �̈�(𝑡)] is the goal of Inverse Dynamics (ID).

Accurate implementation often requires an exact knowledge of the
robot’s dynamic parameters, such as the mass distribution and inertia
tensors, which are often inaccessible or inconsistently measured. Given
that the UR5e robot lacks built-in force–torque sensors, we opted for es-
timating torques from motor currents during robot trajectory execution,
such as 𝜏𝑖 = 𝑟𝑖 ⋅𝐾𝐼 ,𝑖 ⋅𝐼𝑖, where 𝜏𝑖 is the torque on the 𝑖th motor, 𝑟𝑖 is the
corresponding gear ratio, 𝐾𝐼 ,𝑖 is the motor-specific torque-to-current
coefficient, and 𝐼𝑖 is the current supplied to the motor. The 𝐾𝐼 coef-
ficients, pre-calibrated by the robot manufacturer, are retrievable from
the robot controller’s configuration files. For our experiments, the coef-
ficients were set as 𝐾𝐼 = [0.1094, 0.1100, 0.1097, 0.0820, 0.0822, 0.0824],
with gear ratios 𝑟 = [101, 101, 101, 101, 101, 101], as provided by the
manufacturer in the calibration files.

The robot arm’s control was achieved through a custom ROS pack-
ge developed at Bialystok University of Technology.2 We used a list
f timed waypoints [𝑡, 𝑥, 𝑦, 𝑧] that were imbued with the desired pen

orientation. The pen was assumed to align perpendicular to the writing
surface. Next, we solved the IK task using a numerical Jacobian-based
algorithm to establish the robot’s list of timed configuration vectors
[𝑡, 𝜃]. We used the list of configurations to construct a joint-space spline
interpolator. This interpolator generates the immediate desired config-
urations, sent directly to the robot controller at a control frequency of
125 Hz. To achieve the desired accuracy, we had to modify the default
robot controller parameters to 𝑘gain = 2000 and 𝑡look ahead = 0.03 s. The
obot controller responded with the current joint state data, including
he angular positions 𝜃𝑟(𝑡), velocities 𝜔𝑟(𝑡), and actual motor currents
𝐼𝑟(𝑡). We computed the torques 𝜏𝑟(𝑡) based on the currents.

3.2. Estimation of the kinematic and dynamic features with the neural
network model

In order to find a more cost-effective alternative that eliminates
he need for a physical robot, the objective is to develop a system
apable of estimating the angular velocities 𝜃(𝑡), angular positions 𝜔(𝑡),

2 https://gitlab.com/dagothar/kair_universalrobot.
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and force torques 𝜏(𝑡) of the robotic arm by leveraging the (𝑥, 𝑦)-
oordinates of points sampled from signatures. This effort, framed as a
ulti-target regression, seeks to map the 2-dimensional space of signature

oordinates, R2, to an 18-dimensional output space, R18, where each
imension corresponds to one of the six values for 𝜃(𝑡), 𝜔(𝑡), and 𝜏(𝑡).
he primary challenge of this task lies in accurately estimating these
ighteen output values for each point based solely on the two input
eatures despite the inherent variability in the lengths and styles of
ignatures.

The input features were normalized to the [0, 1] range via min–max
scaling, thereby maintaining generalizability across different datasets.
Target values were subjected to a similar scaling process to the [0, 1]
ange. Considering the broad spectrum of target values, this reversible
caling method preserves the model’s general applicability and facil-
tates the learning process. Crucially, the parameters used for scal-
ng were exclusively determined from the training datasets, ensuring
hat their subsequent application to the test sets would not result in
nformation leakage.

We adopted an MLP for its adaptability in managing tasks that
require multiple simultaneous outputs [21]. To enrich the model with
sequential information, each signature point was not considered in
isolation; instead, for each training instance, we included the (𝑥, 𝑦)-
coordinates of the point itself, along with the coordinates of the five
preceding and succeeding points. This sliding window approach, whose
horizon was chosen based on its effectiveness in preliminary trials, in-
corporated contextual information surrounding each point, enhancing
the MLP’s ability to capture the dynamics of the signature movement.
Specifically, given an input vector 𝐱, the MLP performs a series of op-
erations to estimate the outputs for �̂�(𝑡), �̂�(𝑡), and 𝜏(𝑡). The architecture
eatures a ReLU-activated hidden layer:

𝐡 = ReLU(𝐖ℎ𝐱 + 𝐛ℎ), (3)

with twelve units followed by a dropout layer (dropout rate of 0.3) to
mitigate overfitting [22]:

𝐡′ = Dropout(0.3,𝐡). (4)

Uniquely, the model was structured with three separate output ‘‘heads’’,
each comprising six units, facilitating the concurrent estimation of the
three targets. Each output 𝑗 (for 𝑗 ∈ {𝜃 , 𝜔, 𝜏}) is defined as:

𝐲𝑗 = 𝜎(𝐖𝑗𝐡′ + 𝐛𝑗 ), (5)

where 𝜎 denotes the sigmoid activation function, ensuring that the
estimated values are bounded within the [0, 1] range. Our aim was
to strike a balance between effectiveness and simplicity, grounded on
common design choices.

The designated loss function was a composite loss, calculated as the
sum of three mean squared error (MSE) losses, each corresponding to
one of the model’s output heads. Mathematically, if 𝐿𝜃 , 𝐿𝜔, and 𝐿𝜏
represent the MSE losses for the output heads dedicated to 𝜃, 𝜔, and 𝜏
respectively, the total loss 𝐿𝑡𝑜𝑡𝑎𝑙 is formulated as:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝜃 + 𝐿𝜔 + 𝐿𝜏 , (6)

where 𝐿𝑗 = 1
𝑛
∑𝑛

𝑖=1(�̂�𝑖,𝑗 − 𝑦𝑖,𝑗 )2 for 𝑗 ∈ {𝜃 , 𝜔, 𝜏}, 𝑛 is the number of
samples, �̂�𝑖,𝑗 is the estimated value, and 𝑦𝑖,𝑗 is the true value for the
𝑖th sample of the 𝑗th output.

4. Experiments

The experiments aimed to analyse whether the features extracted
from the MLP are similar to those extracted from the UR5e, both in
terms of estimation and performance in ASV.

https://gitlab.com/dagothar/kair_universalrobot
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4.1. Datasets

Six signature databases were used to extract dynamic and kinematic
features, train the MLP network, and validate the generalization of
our proposed model. First, we used the MCYT330 sub-corpus [23]
DS1), which consists of signatures from 330 users, each provid-
ng 25 genuine and 25 forged signatures across two sessions. The
iosecurID [24] (DS2) multimodal database contains online signature

data from 132 users. Each user contains 16 genuine and 12 skilled
forgeries. The Visual [25] (DS3) sub-corpus includes data from 94
sers, each providing 20 genuine signatures from two sessions and 10
killed forgeries. The Blind sub-corpus [25] (DS4) includes 88 users,
ach providing 10 genuine signatures and 10 skilled forgeries. Fi-
ally, the OnOffSigDevanagari-75 (DS5) and OnOffSigBengali-75 (DS6)
atasets [26] each have 75 users, with 24 genuine signatures per user.

These databases provided diverse environments to test the adaptability
nd effectiveness of our method across different signature capture

technologies and forgery scenarios.

4.2. Automatic signature verification

The automatic signature verifier developed in this study com-
prises two key components: function-based features and the verification
mechanism itself.

The function-based features were organized into matrices with 𝑁
olumns and 𝑀 rows. These columns represent concatenated function-
ased features that describe various aspects of the signature, while
he rows correspond to the number of sampling points, which vary

depending on the digitizer’s frequency and the signature’s length and
uration. As such, while the number of columns was fixed across
ll experiments, the number of rows fluctuated with each signature.
ollowing [2], each feature within the matrix was first normalized
ithin the range [0, 1]. To enrich the feature set, each feature’s first
nd second derivatives were calculated using a second-order regression
nd incorporated into the feature matrix, which was then standardized
sing z-score normalization.

The UR5e robot provided six initial function-based features for
ach degree of freedom. In the case of the angular position 𝜃𝑟(𝑡), a
omprehensive feature matrix was developed. The same approach was
pplied to angular velocity 𝜔𝑟(𝑡) and force torques 𝜏𝑟(𝑡), and to their
stimation provided by the MLP model. Notably, since the pen attached
o the axis of the sixth joint of the UR5e did not rotate around its axis,
he angular velocity 𝜔6(𝑡) remained constant, and was consequently
xcluded from the verification process.

For classification, a standard implementation of the Dynamic Time
arping (DTW) [27] algorithm was used to optimize the Euclidean

distance between two feature matrices. The computation was acceler-
ated by applying the Sakoe–Chiba band [27], limiting the search width
o 𝑀∕10 of the diagonal. The verification process involves comparing
 questioned signature 𝑞 against a set of 𝑅 reference signatures. The
inimum DTW distance quantifies the relationship of 𝑞 to the reference

et: 𝑠𝑅(𝑞) = arg min𝑟∈𝑅[𝐷 𝑇 𝑊 (𝑞 , 𝑟)], where 𝑟 is a reference signature,
nd 𝑠𝑅(𝑞) is the non-normalized score.

Two stages of normalization were subsequently applied to these
cores. The first stage uses the warping path length |𝑝| to normalize
cores for detecting random forgeries: �̂�𝑅1

(𝑞) = 𝑠𝑅(𝑞)∕|𝑝|. In the second
stage, a weighted factor 𝜇𝑅, derived from all reference signatures of
the user, is used to normalize scores for detecting skilled forgeries:
̂𝑅2

(𝑞) = 𝑠𝑅(𝑞)∕𝜇𝑅.

4.3. Experimental setup and metrics

For feature estimation using the MLP, we employed a four-model
approach to estimate each signature in the DS1 dataset. Each model
sed identical hyperparameters, but was tested on distinct quarters of
he dataset. The outputs from these models were averaged to produce
133 
Table 1
UR5e kinematic and dynamic estimation performances.

Model Parameter MAE MSE

MLP
Angular velocities, 𝜃(𝑡) 0.0041 0.0001
Angular positions, 𝜔(𝑡) 0.0571 0.0063
Force torques, 𝜏(𝑡) 0.0126 0.0004

RNN
Angular velocities, 𝜃(𝑡) 0.1237 0.0663
Angular positions, 𝜔(𝑡) 0.0276 0.0015
Force torques, 𝜏(𝑡) 3.1420 23.2520

LSTM
Angular velocities, 𝜃(𝑡) 0.1283 0.0694
Angular positions, 𝜔(𝑡) 0.0268 0.0015
Force torques, 𝜏(𝑡) 3.0116 20.1721

GRU
Angular velocities, 𝜃(𝑡) 0.1370 0.0800
Angular positions, 𝜔(𝑡) 0.0285 0.0016
Force torques, 𝜏(𝑡) 3.8371 34.4615

the final results. To assess generalizability, a final model was trained on
the entire DS1 dataset. Training utilized the Adam optimizer [28] with
 commonly used learning rate of 0.01. An early stopping mechanism
ased on the validation loss observed on 20% of the training set was

employed to prevent overfitting. The patience parameter was set to
1 epoch, leading to convergence within a few epochs. Performance

etrics included the mean absolute error (MAE) and mean squared
error (MSE).

For signature verification, we approached the random forgeries and
skilled forgeries experiments, following the common standard of the
ICDAR 2021 signature competition [29]. We used five random genuine
signatures from each writer as reference signatures, while the remain-
ing genuine signatures served as test samples. For random forgery, one
genuine signature from each user was randomly selected from all other
sers. As recommended in [29], all the skilled forgeries were used in

the test, but not employed as reference negative signatures. Finally,
to illustrate the system’s efficacy at various False Acceptance Rate
FAR) and False Rejection Rate (FRR) levels, the Detection Error Trade-
ff (DET) curves were shown on a logarithmic scale. As is common
n signature verification [1], we used the Equal Error Rate (EER) to

evaluate the performance. Note that the EER represents the point on
the DET plot where the FAR and FRR are equal. These experiments
were conducted ten times, the DET curves were averaged, and the EER
is reported as the average ± standard deviation for each case.

4.4. Feature estimation results

The UR5e kinematic and dynamic estimation results are summa-
rized in Table 1. To explore alternatives, we show the results obtained
not only with the proposed MLP model but also with state-of-the-art
techniques, including Recurrent Neural Network (RNN), Long Short-
Term Memory (LSTM), and Gated Recurrent Unit (GRU) models, which
are well-known for their effectiveness in sequence prediction tasks.

Specifically, the RNN, LSTM, and GRU architectures employed in
this study consist of a bidirectional layer with 32 units followed by a
time-distributed layer with 18 output units, corresponding to the six
values for 𝜃(𝑡), 𝜔(𝑡), and 𝜏(𝑡). The experimental setup for these models

as the same as for the MLP to ensure a fair comparison. The only
ifference was the additional preprocessing step needed to pad the
equences to ensure uniform length, as these models accept sequences
s input instead of sliding windows of points.

The findings reveal distinct differences in model performance across
the various parameters. The MLP significantly outperforms the RNN,
LSTM, and GRU models in estimating angular velocities and force
torques, with much lower MAE and MSE values. This suggests that the
sliding window approach used in the MLP effectively captures the local
context of signature points, which is crucial for accurately estimating
these parameters. Conversely, the sequential models may struggle to
capture this fine-grained context, leading to higher errors. For angular
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Fig. 2. Visual representation of the sequences of angular positions 𝜃(𝑡), angular velocities 𝜔(𝑡), and force torques 𝜏(𝑡) for signature 005f01 of DS1. The sequences obtained by the
UR5e are shown with a blue line, while those estimated by the MLP are shown with a red line.
positions, the RNN, LSTM, and GRU models exhibit slightly better
performance than the MLP. This indicates that angular positions benefit
from the sequential nature of these models, which can better capture
temporal dependencies in the data.

Overall, the results showcase high accuracy in the model’s estima-
tions, especially with regard to angular velocities and force torques.
However, numerical results alone do not fully allow to evaluate the
model’s proficiency in accurately capturing the underlying trends over
time. To address this, Fig. 2 visually compares the model’s estimated
trends against actual data. The model demonstrates high accuracy in es-
timating angular velocities and force torques. However, there are some
minor deviations in amplitude and fluctuations along the 𝑦-axis. The
sixth value for the angular velocities and force torques is challenging to
estimate as the actual values remain relatively constant. Although the
model shows an overall accurate replication of the function behaviour
for angular positions, there is a slight offset. In summary, the model is
somewhat accurate, but does not always perfectly mimic the function
behaviour.

4.5. Online signature verification results

The effectiveness of the method is demonstrated in two ways. First,
Fig. 3 shows that features generated by the neural network perform
similarly to, or even better than, those obtained from the robot at
the EER level. In the figure, grey lines represent baseline results using
function-based features directly extracted from the UR5e robot: angular
positions, 𝜃, are depicted with solid lines, angular velocities, 𝜔, with
dashed lines, and torques, 𝜏, with dotted lines. The blue lines represent
performance using estimated features with the same database (DS1).
Comparing the results for each type of features, we observe almost
similar results on 𝜃. However, in the case of 𝜔 and 𝜏, the EER was
always better when these sequences were extracted from the neural
network. Also, corresponding DET curves from MLP are always below
the UR5e ones. These results satisfy our requirements with the neural
network, which are consistent in both random and skilled forgeries.
It could be said that although the UR5e robotic arm provides precise
measurements, it can result in overfitting while performing signature
verification. Moreover, the MLP model is designed to generalize better
from training data to unseen data, even though it uses estimated
features. This improves its performance and helps prevent overfitting.
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Second, Fig. 4 examines the generalization capacity of the MLP
model, trained solely with data from DS1, and further tested with
signatures from DS2 to DS6, which were never processed by the UR5e
robot. This created a challenging situation for evaluating the utility of
the estimated features. The findings revealed that in DS2, while there
was a significant decline in EER for 𝜃 in random forgeries, 𝜔 and 𝜏
delivered results comparable to DS1. Similar outcomes were observed
in skilled forgeries for DS2, with angular velocities and force torques
showing improved EERs. For DS3, the angular position again displayed
outlying results in random forgeries; however, angular velocities and
torques performed slightly better. In skilled forgeries, stable EERs com-
parable to DS2 were achieved with angular velocities and torques. For
DS4, we observed better performance for 𝜃 in both random and skilled
forgeries, with slightly higher results for skilled forgeries in angular
velocities and torques. DS5 and DS6 reported similar performance in
random forgeries, consistent with the other results. Note that these two
datasets did not include skilled forgeries. These results underscore the
robustness of the angular velocity and force torques obtained by the
MLP across different datasets and forgery scenarios.

5. Conclusions and future works

We introduced a neural network model to estimate the kinematic
and dynamic features of a robotic arm. We trained the model using real
robotic features and demonstrated its practical application in signature
verification. The MLP demonstrated the ability to estimate both kine-
matic and dynamic features from the trajectory of unseen signatures.
Furthermore, the results also showed that the neural network used
can reduce the need for experimentation with a real robot to extract
features due to its generalization in ASV. The robotic features and the
model are publicly available for further research.

For future works, one promising direction is to develop a custom
robotic arm tailored specifically for signature verification, potentially
replicating the kinematics and dimensions of the human arm based on
anthropometric data. It could enhance the accuracy of signature anal-
ysis by capturing the nuances of signature dynamics more precisely.
A potential limitation of our work is the assumption that the same
robot configuration is suitable for all signers. While personalizing the
robot model for each signer might better capture individual human
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Fig. 3. Comparison of performance between the baseline using UR5e features and
estimated features, illustrated with DET plots and EER for signature verification results.

Fig. 4. Performance results across different databases, trained with DS1 data, illus-
trated through DET plots and EER values for signature verification.
135 
variability, it is uncertain whether this would actually improve the
performance of the automatic signature recognizer. Additionally, inves-
tigating interpretable neural network models could offer valuable in-
sights into the decision-making process. Further improvements include
attention mechanisms to refine model performance. These advance-
ments could significantly improve the effectiveness and adaptability of
the signature verification system.
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