Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/134390
Título: Analysis of the Use of Artificial Intelligence in Software-Defined Intelligent Networks: A Survey
Autores/as: Ospina Cifuentes, Bayron Jesit 
Suarez, Alvaro 
García Pineda, Vanessa
Alvarado Jaimes, Ricardo 
Montoya Benítez, Alber Oswaldo 
Grajales Bustamante, Juan David
Clasificación UNESCO: 3325 Tecnología de las telecomunicaciones
Palabras clave: Artificial Intelligence
Intelligent Networks
Network Security
Software-Defined Network
Traffic Prediction
Fecha de publicación: 2024
Publicación seriada: Technologies
Resumen: The distributed structure of traditional networks often fails to promptly and accurately provide the computational power required for artificial intelligence (AI), hindering its practical application and implementation. Consequently, this research aims to analyze the use of AI in software-defined networks (SDNs). To achieve this goal, a systematic literature review (SLR) is conducted based on the PRISMA 2020 statement. Through this review, it is found that, bottom-up, from the perspective of the data plane, control plane, and application plane of SDNs, the integration of various network planes with AI is feasible, giving rise to Intelligent Software Defined Networking (ISDN). As a primary conclusion, it was found that the application of AI-related algorithms in SDNs is extensive and faces numerous challenges. Nonetheless, these challenges are propelling the development of SDNs in a more promising direction through the adoption of novel methods and tools such as route optimization, software-defined routing, intelligent methods for network security, and AI-based traffic engineering, among others.
URI: http://hdl.handle.net/10553/134390
DOI: 10.3390/technologies12070099
Fuente: Technologies[EISSN 2227-7080],v. 12 (7), (Julio 2024)
Colección:Artículos
Adobe PDF (2,86 MB)
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 17-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.