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Abstract: The distributed structure of traditional networks often fails to promptly and accurately
provide the computational power required for artificial intelligence (AI), hindering its practical
application and implementation. Consequently, this research aims to analyze the use of AI in
software-defined networks (SDNs). To achieve this goal, a systematic literature review (SLR) is
conducted based on the PRISMA 2020 statement. Through this review, it is found that, bottom-up,
from the perspective of the data plane, control plane, and application plane of SDNs, the integration
of various network planes with AI is feasible, giving rise to Intelligent Software Defined Networking
(ISDN). As a primary conclusion, it was found that the application of AI-related algorithms in
SDNs is extensive and faces numerous challenges. Nonetheless, these challenges are propelling the
development of SDNs in a more promising direction through the adoption of novel methods and
tools such as route optimization, software-defined routing, intelligent methods for network security,
and AI-based traffic engineering, among others.

Keywords: software-defined network; artificial intelligence; traffic prediction; network security;
intelligent networks

1. Introduction

In recent years, the rapid advancement of smart devices, networking technology, and
the exponential surge in user numbers have led to an explosive growth in global data traffic.
This phenomenon has been accompanied by the convergence of services such as triple play
(giving rise to n-play) [1]. To optimize the increasingly complex problem of large-scale
converged traffic distribution, networks have become more and more heterogeneous. Het-
erogeneous network infrastructure leads to increased complexity for efficient organization,
management, and optimization. To tackle the aforementioned issues without compromising
the openness and transparency of the forwarding plane, enhancing network management,
and improving the intelligence of methods, researchers [1] proposed the concept of a
knowledge plane (KP), which introduces automation, recommendations, AI, and machine
learning (ML) through the application of cognitive technology to achieve the separation of
algorithms, strategies, objectives, and the representation of innovative models.
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However, the distributed characteristics of traditional network systems hinder integral
network control, leading SDNs to be considered as reducing its size and complexity [2] to
compensate for the tight coupling and insufficient control of the control plane and data
plane of the traditional network architecture. SDNs decouple the control plane separately
to achieve separation from the data plane [3]. Thus, the data plane is solely responsible
for routing and forwarding, while the control plane implements forwarding and decision-
making, and the application plane provides users with programmable network services.
Administrators can control forwarding according to their desires, achieving universal
forwarding and efficient manipulation of network data flows, thereby enhancing flexibility.

SDNs offer promising technical support for effectively detecting and managing net-
works. Recently, AI technology has been widely utilized in SDN network security, traffic
engineering, and other domains [4]. As research delves deeper, it has been discovered that
tools such as Big Data can be leveraged for related algorithms, enhancing the operational
efficiency of SDNs and reducing operational costs [5]. The combination of SDNs and AI
emerges as a powerful and suitable solution for processing large amounts of data. SDNs
provide a flexible and adaptable infrastructure that allows for centralized and dynamic
network management, while AI offers advanced capabilities for data-driven analysis and
decision-making. This combination enables the maximization of big data potential by
optimizing information flow and network operational efficiency [6,7].

The technical advantages of Big Data in network planning and optimization are fully
applicable in routing, traffic management, and controllers, among others, enabling the
enhancement of SDNs’ operational efficiency [8,9]. Compared to traditional network data
centers, SDN-based data centers can dynamically allocate data center resources to different
Big Data applications to meet the Service Level Agreements (SLAs) of these Big Data
applications, thus achieving better performance [10]. Therefore, the proposition of AI
technology is grounded in the backdrop of Big Data, and the successful combination of
SDNs and Big Data ensures the success of AI-based SDNs [11].

AI leverages the global control of the SDN controller to facilitate network management
and control. Integrating with the various planes of SDNs, it enables traffic prediction,
enhances security optimization, and processes data intelligently. From a macro perspective,
the advent of cloud computing, edge computing, and other Big Data technologies has paved
the way for the application of AI in software-defined systems, enabling them to handle large-
scale spatiotemporal challenges and offer advantages in complex traffic engineering and
routing problems. Compared to traditional SDNs, AI-based SDNs not only have the ability
to process large-scale data rapidly but, more importantly, they inherit AI characteristics
and possess learning capabilities, making the network optimal [12].

In light of the above, this article will continue to discuss the challenges faced by
AI-based SDNs from the following aspects: Based on the foregoing and as the main
objective of this article, the analysis of AI usage in ISDNs is proposed. To achieve this,
a systematic literature review methodology is developed based on the PRISMA 2020
statement. Additionally, to address the research needs, the following questions are posed:

RQ1: What are the years with the highest interest in the use of AI in ISDNs?
RQ2: What are the main research references on the use of AI in ISDNs?
RQ3: What is the thematic evolution derived from scientific production on the use of AI
in ISDNs?
RQ4: What are the main thematic clusters on the use of AI in ISDNs?
RQ5: What are the growing and emerging keywords in the research field of AI usage
in ISDNs?

The document is structured as follows: initially, the research methodology employed
is presented. Subsequently, the results obtained from the methodology used are presented.
Following this, a discussion regarding the thematic aspects and the obtained results is
provided. Finally, the main conclusions derived from the results and discussion are ad-
dressed. The importance of this article is based on the main contributions of AI to SDNs,
demonstrating a notable increase in research activity since 2018 and highlighting practical
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applications in smart cities and vehicular systems. This article fills the gap in knowledge
that other investigations have not addressed yet, focusing mainly on specific technical
aspects such as load balancing or security in SDNs. This research provides a broad and
versatile view that includes both the development of AI models for real-time network
optimization and the exploration of innovative applications in emerging sectors such as 6G
wireless intelligence. Furthermore, this study emphasizes the importance of scalability and
interoperability with emerging technologies, presenting a comprehensive and advanced
overview in the field of AI-driven SDNs. Table 1 summarizes the main aspects addressed
in this research work.

Table 1. Summary of the main aspects addressed in the study.

Topic Description

Main focus AI integration with SDNs for practical and
innovative applications.

Increase in publications Notable increase in research activity since 2018, with
peaks in 2019 and 2021.

Practical applications It highlights applications in smart cities and vehicle
intelligence systems.

Real-time optimization
Development of AI models for real-time network
optimization, dynamically adapting to changing network
traffic conditions.

Interoperability
Research on the interoperability and integration of SDNs
with emerging technologies such as edge computing and
virtualized function networks.

Security in SDN networks
Development of high-quality datasets and advanced
predictive models for threat detection and
cyberattack mitigation.

Future lines of research
Scalability and efficiency of AI algorithms. Integration
with 6G wireless intelligence. Security and resilience of
network infrastructures.

Source: Self-elaboration based on literature review.

2. Materials and Methods

To achieve the research goal, we propose conducting a systematic review of the
literature, following the guidelines outlined in the PRISMA 2020 statement. Hence, for
the quantitative analysis, PRISMA guidelines are followed, focusing on metadata analysis,
thus providing a holistic view of the current state of research. Thus, according to [13], the
factors to be followed for PRISMA-based analysis are as follows:

a. Eligibility criteria: In the context of bibliometrics regarding the use of AI in SDNs,
inclusion criteria are established based on three main aspects. First, metadata from
the title and abstract are considered fundamental for record selection. Second, articles
combining the concepts of “AI” and terms related to “SDN” are included. Finally,
documents related to management and energy are excluded. The exclusion pro-
cess consists of three phases: discarding records with incorrect indexing, excluding
documents without access to full text (only for systematic literature reviews), and
removing records with incomplete indexing to ensure data integrity.

b. Information source: Scopus was selected due to its relevance as a primary source of
scientific information, offering extensive coverage in various disciplines. Its previous
use in similar studies ensures accurate comparisons with previous research.



Technologies 2024, 12, 99 4 of 41

c. Search strategy: A specialized search equation is developed for Scopus, adapted
to the inclusion criteria and characteristics of the database, ensuring the precise
identification of relevant studies. Thus, the search equation is as follows:

(TITLE (“software defined network*” OR sdn OR “software-defined network*”)
AND TITLE-ABS (artificial intelligence”))

d. Data management: Microsoft Excel® is employed for data extraction, storage, and
processing, while VOSviewer® and Bibliometrix assist in the visualization and analy-
sis of bibliometric indicators.

e. Selection process: An automated tool in Microsoft Excel® is used to mitigate the risk
of loss or incorrect classification of relevant studies, applied by all researchers.

f. Data collection process: Microsoft Excel® is used to organize and systematize data,
with participation from all authors to validate the extracted information, ensuring
impartiality and objectivity.

g. Data elements: Exhaustive searches are conducted to identify all relevant articles,
excluding texts with missing or unclear information to maintain study coherence
and appropriateness.

h. Assessment of study bias risk: An automated tool in Microsoft Excel® is used for
data collection, ensuring uniformity and coherence in the process, and all authors
are involved in assessing the risk of bias.

i. Effect measures: Instead of traditional measures, the scientific landscape is analyzed
through the number of publications and citations related to the topic, evaluating
the temporality of keyword usage and thematic association between studies with
Microsoft Excel® 365 A3, VOSviewer®1.6.18, and the R® 4.3,3 Bibliometrix tool®

4.1 via Biblioshiny.
j. Synthesis methods: Specific criteria are applied for study selection, and tables and

graphical representations are used to synthesize results, employing automated bib-
liometric indicators with Microsoft Excel®.

k. Assessment of reporting bias: The potential influence of reporting biases in biblio-
metric synthesis is acknowledged, such as thesaurus biases and the exclusion of texts
with incomplete indexing, requiring caution in result interpretation.

l. Certainty assessment: The certainty in the body of evidence is evaluated through
inclusion and exclusion criteria, the definition of bibliometric indicators, the reporting
of potential biases, and the discussion of study limitations. The recommended
flowchart for methodological design is included. Additionally, Figure 1, which
presents the recommended flowchart by [14] to account for the methodological
design, is provided.

Regarding the systematic literature review (SLR), this methodology was employed for
the qualitative component of the study, which mainly corresponded to the extraction of
relevant variables and factors from the research topic. Following the research criteria and
considering the required information, a search strategy in Scopus was defined to obtain
the most precise results for the research. The same search equation used for the PRISMA
statement was employed to address and resolve the research problem. Thus, the inclusion
and exclusion criteria, as well as the SLR process, comprised the following steps according
to [14]:

Study selection: After searching the Scopus database, works that were most likely
to address the research problem were selected primarily based on the information they
contained. For this selection, the following criteria were considered:

• Studies must be published in journals classified in quartiles Q1, Q2, and Q3 of the
Scimago Journal & Country (SJC) Rank platform to ensure rigorous research and
obtain quality results.

• Studies must address topics related to the use of AI in ISDNs.
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• The theoretical foundations of the studies relevant to the research will be taken into
account.

• A total of 140 studies obtained from Scopus were reviewed; those meeting the specified
criteria for the research were selected.
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Data collection: After searching and compiling the works, their content was analyzed,
and variables to study were identified. To process the data, a database was created in Excel,
considering two types of data referred to as “variables”. Each variable is detailed below.

Study characterization variables: The following variables aid in recognizing and
identifying each reviewed study, enabling a literature review with high-quality standards,
and minimizing potential biases:

• id.
• Source.
• Journal name.
• Year of publication.
• Journal impact factor.
• SJR.
• h-index.
• Title of the study.
• Knowledge area.
• Methodological design.
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• Data analysis method.

Variables related to the study’s theme: These variables correspond to three groups,
namely, variables related to SDNs, variables related to AI, variables related to network
traffic, and finally variables related to network security.

3. Results

From the results of the PRISMA methodology (2020), indicators of quantity and quality
can be identified, which gives an idea of the production and quality of research related to
ISDN through the use of AI. Quantity indicators allow visualizing, among other aspects,
the amount of production associated with the subject under study and, thus, the academic
community’s interest in this topic. Additionally, it is possible to obtain quality indicators
from the results, which are obtained from the citations received by the publications in
journals and authors.

3.1. Number of Publications per Year

As one of the main indicators of quantity, productivity is analyzed based on publica-
tions per year, as the ISDN theme is based on the use of ML. In this regard, Figure 2 depicts
the trend of publications per year in the field of SDNs and AI, showing growing interest
from approximately 2018 onwards as well as from 2021. Among the most relevant articles
for the year 2019, a review article with 110 citations by [15] stands out, which presents the
relationship between network applications andSDN concepts through the application of
ML algorithms. Similarly, [16] describes the application of metaheuristic ML and fuzzy
inference systems to the programmability of SDNs. For 2021, with 21 citations, there is a
proposal focused on smart cities, where a vehicular intelligence system based on predicting
the next position using VANET based on the Internet of Things (IoT) defined by software
(IoTSD) is presented [17]. For the year 2023, also with 23 citations, the highest number of
citations for that year is a VANET proposal based on SDN improvement as an enhancement
compared to traditional VANET that may be susceptible to attacks due to its centralized
structure [18]. In 2024, a proposal has been put forward focusing on the utilization of a
Q-learning algorithm to optimize routing, specifically aimed at minimizing latency. This
proposal adopts a direct modeling strategy to tackle the multi-path flow routing issue [19].
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3.2. Number of Posts per Author

Regarding the most productive authors, Figure 3 presents the authors with the highest
number of publications. Among the most productive authors are Belgaum MR., Chen J.,
and Musa J., with five published articles each. Among the most cited articles by these
authors, one by Chen J. stands out, where he presents a software-defined framework for an
integrated space-air-ground vehicular network to achieve flexible, reliable, and scalable
network resource management [20]. Next, there is an article by Belgaum MR. and Musa
J., presenting a systematic review of load balancing techniques in SDNs [21]. Following
them are authors Alam MM. and Mazliham MS., with four publications each, among which
notable articles developed in cooperation by both authors include a literature review ana-
lyzing the role of AI alongside the problems and opportunities faced by all communities in
incorporating the integration of these technologies in terms of reliability and scalability [22].
Furthermore, there exists a study delving into two AI optimization methodologies, specifi-
cally Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO), employed
to achieve load balancing within Software-Defined Networking (SDN) environments [23].
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On the other hand, authors Alansari Z., Bendale SP., Kumar S., Lu X., and Zhang Y.
have three publications each. Among the most relevant works by these authors based on
their citation count are some in collaboration with some of the aforementioned prominent
authors, for example, some previously mentioned works such as [22,23]. Additionally, there
is research explaining the impact of AI-enabled SDNs on infrastructure and operations,
addressing trends and challenges in this knowledge area [24]. In another work by Bendale
SP., with other authors, implications and applications of AI and ML concepts in SDN are
reviewed, along with their future perspectives [25].

3.3. Thematic Evolution

Regarding the thematic evolution associated with the topic of ISDN through the use
of AI, Figure 4 illustrates the trend and evolution of keywords over time, from 2015 to 2024.
Initially, the focus of the research was on investigating and understanding AI. One of these
early works was a proposal for a set of OpenFlow technologies utilizing SDN to detect
network attacks, network cameras, and surveillance systems that combine wireless sensors
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and AI techniques [26]. Later, in 2020, advancements in AI study led to proposals such
as that by [27], where the authors introduce a DDPG-EREP (Enhanced and Renewable
Experience Pool) algorithm in which they suggest dynamically adjusting the capacity and
sampling size of the experience pool based on the ongoing iteration number. This algorithm
enables real-time updating of the experience and its application to optimize SDN routing.
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For 2021, the most relevant and topical keywords were SDN and data center networks.
A study associated with these terms introduces GDLB, a Deep Reinforcement Learning
(DRL) framework devised for addressing the load balancing challenges in Software-Defined
Networking (SDN) data center networks. GDLB integrates Graph Convolutional Neural
Networks (GCN) with DRL techniques [28]. From 2022 to 2024, terms such as information
management and learning algorithms emerge, where research focuses on the development
of AI and SDN related to information management and the application of different learning
algorithm techniques. A study introduces SSHS, the SDN Seamless Handover System,
which integrates SDN with a machine learning classifier to oversee the network connectivity
of mobile nodes. SDN centralizes control to facilitate comprehensive network management
while incorporating a decision tree (DT) classifier within the RYU controller to enhance the
intelligence of the SDN application. This enables the analysis and prediction of data among
mobile nodes generated by the model [29]. Concerning learning algorithms, in the study
conducted by [19], the authors focus on implementing a Q-learning algorithm to optimize
routing, particularly aiming to minimize latency. They adopt a direct modeling approach
to address the multi-path flow routing problem.

3.4. Thematic Clusters

Regarding the relationship between key terms, Figure 5 illustrates the correlation.
The first cluster comprises terms such as AI, program application, SDN, network function
virtualization, and 5G mobile communication systems. This cluster of words is defined
by the integration of these terms in various research works. One such work presents a
framework combining technologies such as SDN, network function virtualization (NFV),
and ML/AI to enhance network management in OpenStack Clouds, making them more
predictable, reliable, and secure [30]. The next group of terms includes keywords like
SDN, network architecture, network security, denial-of-service attacks, machine learning,
and learning algorithms. For this cluster primarily focused on network security, various
proposals have been presented, such as that of [31], where the authors combine pervasive
AI, machine learning, and quantum computing with trust management principles. They
suggest an ML model inspired by quantum computing to enhance the resilience of AI-
driven SDN-based network security architectures.
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The following cluster comprises terms such as learning systems, SDN, deep learning,
quality of service (QoS), reinforcement learning, and network routing. This cluster is based
on different proposals aimed at improving network service quality and delivery, as pre-
sented in the proposal by [32]. In this study, an Intelligent SDN Routing (ISR) framework is
presented, which leverages SDN technology alongside a Deep Q-Network-based network
routing algorithm (TL-DQN-RA). This algorithm incorporates LSTM thresholds within
SDN. TL-DQN-RA integrates Long Short-Term Memory (LSTM) into Deep Q-Network
(DQN) and establishes the experience replay group threshold to expedite algorithm con-
vergence. This allows the network to learn dynamically and adaptively modify routing
strategies in response to evolving network requirements. The last group of words com-
prises IoT and security. This cluster emerges from the need to develop communication
systems and data networks that support the IoT demand, ensuring information integrity
and security. For example, in [33], they emphasize the need for internet service providers
(ISPs) to better implement, configure, and automate their traffic management policies and
network equipment. However, they raise concerns about the growing demand for resources
from users due to aspects such as virtual reality, metaverse, IoT, and AI, among others [34].

3.5. Emerging Themes

Regarding the relevance and development of key terms, Figure 6 illustrates how terms
are positioned based on their current development and relevance. In this context, the
first quadrant presents terms that are more developed but currently less relevant. Here,
terms such as SDN associated with sensor nodes and Wide Area Networks (WAN) can
be observed. Additionally, terms like research communities, graph neural networks, and
open-source software are included. The second quadrant, representing the most relevant
and developed terms, corresponds to terms that are currently of greater importance, as they
are the subject of ongoing research. This quadrant includes terms such as denial-of-service
attacks, support vector machines, and distributed denial-of-service.
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The third quadrant displays terms that are less developed and less relevant, corre-
sponding to terms that have not been particularly prominent within the theme of interest.
Here, terms like computer software and heuristic algorithms are found. In the fourth
quadrant, the most relevant but less developed terms are situated. This quadrant en-
compasses the most recent terms, indicating emerging topics. Among the terms in this
quadrant are SDN supported by AI, IoT, and network security, and SDN architecture and
network security.

Thus, the aforementioned graphs illustrate the thematic evolution related to massive
data management, traffic classification, route optimization, and network security. Conse-
quently, based on these results, the analysis proceeds to explore how SDNs, especially when
combined with AI, have fostered research advances in these specific fields. Therefore, a
detailed examination of AI-based SDN networks is conducted, describing their application
from the perspective of the three-layer architecture of SDN, comprising the data plane,
control plane, and application plane.

4. Discussion

Based on the analysis of the previously obtained results, it is possible to discuss
potential application scenarios and standardized definitions under SDN with AI, as well
as current challenges and key SDN technologies based on AI from three aspects: route
optimization, network security, and traffic engineering. Finally, addressing the future
of AI-based SDN, the challenges faced, and development trends in combination with
other fields.



Technologies 2024, 12, 99 11 of 41

4.1. Previous Knowledge and Related Work
4.1.1. Core Concepts Based on SDN Architecture

Below is a definition and summary presentation of some characteristics associated
with SDN networks and key aspects of these networks that may be relevant to under-
standing their integration with AI and their relationship with different terms and topics as
identified by the obtained results. Massive Data Management: SDN is considered one of the
most promising solutions capable of revolutionizing the networking world through proper
network management. Traffic engineering under the SDN architecture can leverage central-
ized SDN control through dynamic analysis, prediction, and regulation of transmission
behavior, balancing network load, and maximizing network utilization to optimize network
performance. However, as the network data scale continues to expand, the dimension
and complexity of the data also increase. Traditional SDN urgently needs to overcome
significant technical bottlenecks in data processing.

Traffic Classification: Traditional traffic classification methods primarily include port-
based packet deep inspection and AI. As applications increase and ports become more
dynamic, the traditional port-based traffic classification method becomes ineffective. Most
packet deep inspection methods use regular expression matching to identify data packets,
but there are two implementation methods: non-deterministic finite automata (NFA) and
deterministic finite automata (DFA). Both have certain limitations; for example, NFAs
have a smaller memory footprint but require substantial time to match. Conversely, DFAs
exhibit the opposite scenario, with a higher risk of occupying excessive memory space. The
current principal traffic classification methods mainly focus on using various AI methods.
Although AI methods can effectively classify traffic, with the increase in application data
and changes in form, there are higher requirements for the temporal and spatial complexity
of algorithm training.

Route optimization within an SDN framework involves traffic routing control through
the manipulation of the flow table in switches by the controller. While the controller is
tasked with devising routing strategies for new flows, the majority of routing optimization
techniques rely on heuristic algorithms. Heuristic algorithms bring a computational load
to the controller, while AI algorithms do not require precise mathematical models of
the underlying network and can quickly provide nearly optimal routing solutions after
training. Therefore, AI methods are used to build stable routing solutions. Robust models
and optimization methods meeting the precise and real-time routing requirements of SDN
networks are future research focal points.

Network Security: In SDN networks, by applying relevant Big Data and AI algorithms,
some SDN network security issues can be effectively prevented and resolved. Firstly,
various effective Big Data methods are used to obtain diverse network data, and by an-
alyzing various data, network data anomalies are detected, real-time network security
confrontations are conducted, and threats are effectively prevented. Secondly, they con-
struct ultra-high-dimensional multidimensional data models, which allow for accurate
analysis of online data flows and achieve real-time attack detection and prevention using
effective AI. Intelligent methods such as regression analysis and support vector machines,
among others, can analyze historical network data and classify types of attacks in historical
data. However, network security issues still face timeliness and non-reuse problems, and
protection is a process in play, i.e., finding the next move in the chess game before the
opponent is key to winning the offensive and defensive network games. Additionally, it is
essential to understand the thematic evolution of communication networks, specifically
data transmission networks, as well as the emergence of AI and its relationship through
different methods and technologies associated with these two knowledge fields.

4.1.2. Current State of SDN

As the network continues to expand, the increase in Internet traffic and changes in
user demand pose challenges. Programmable networks offer a solution to these problems.

a. SDN as an architecture
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From this premise, researchers have introduced concepts such as abstraction, dis-
tributed state abstraction, and configuration abstraction [35], aiming to separate the control
function from the switch in traditional networks and manage it through the control plane.
A standard interface has been established to connect the data and control planes, maintain-
ing switch identification for data exchange. The control plane provides a global view of
devices across the network, integrating information and enabling unified configurations
through a specific application interface. Users make configurations through this interface,
facilitating the automatic deployment of forwarding devices along the path. Thus, the
data forwarding path in the network is no longer tied to the data plane, resulting in an
SDN architecture that separates the data plane from the control plane and features unified
interface standards [36].

The benefits of SDN are diverse and have revolutionized the way networks are man-
aged. Among them, the separation between data forwarding and control allows for greater
flexibility and efficiency in network management. Furthermore, it offers robust support
for software programming, facilitating network adaptation to each user’s specific needs.
Another key benefit is the centralized control of network status, which simplifies network
management and optimizes performance. SDN technology has found application across
various domains, encompassing network virtualization [37], data center networks [38],
wireless LANs [39], and cloud computing [40,41]. This is achieved by separating the dis-
tinct planes present in conventional networks, namely the data plane, the control plane,
and the application plane. This separation allows for more efficient and flexible network
management, as reflected in the architecture shown in Figure 7.
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The SDN architecture, represented in Figure 7, consists of three planes: application,
control, and data, arranged in a descending hierarchy. In the application plane, user inten-
tions are reflected, allowing for the development of custom applications to meet specific
needs, such as network visualization and automation. Developers gather network data,
such as topology and statistics, to create solutions tailored to real needs. The control plane,
connected through the northbound interface, offers the possibility of custom development
for users. Its main function is to manage the physical network, acquiring and maintaining
vital information such as topology, thus ensuring system stability.
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b. SDN as open source

SDN controllers accessible on the market are categorized into commercial and open-
source options. Leading manufacturers, such as Cisco, NEC, and Brocade, offer commercial
solutions. Conversely, community organizations provide open-source alternatives like
Ryu, OpenDaylight, and Floodlight. These controllers play a crucial role in network
operation, offering flexibility and adaptability according to user needs. Together, the SDN
architecture provides an innovative approach to network management, allowing for greater
customization and control over the network infrastructure.

Open-source solutions are often offered by user communities. Given their widespread
adoption by individual users, the main open-source alternatives today are Ryu, Open-
Daylight, and Floodlight, whose comparison is detailed in Table 2. The control plane is
responsible for implementing the physical switch, which was originally hardware-based.
However, with the advancement of virtualization, software switches (open vSwitch, known
as OVS) have overcome the limitations of physical devices, offering integration and switch-
ing functions for virtualization and supporting distributed environments and networks
based on open-source technology. At present, OVS is interoperable with standard manage-
ment interfaces like NetFlow and sFlow. As for the data plane, many organizations are
standardizing the southbound interface. For example, the Open Networking Foundation
(ONF) has proposed the adoption of the OpenFlow protocol [42]. Likewise, the Internet
Engineering Task Force’s International Engineering Group has suggested the Extensible
Presence and Messaging Protocol (XMPP) and other protocols defined by the IETF. The
advent of OpenFlow has dismantled barriers within the SDN hardware market, enabling
applications to interact with the SDN controller for exchanging data. The data plane com-
prises a range of fundamental devices that, via software/hardware implementation, receive
directives from the higher layer through the southbound interface. These devices then
process network data based on these directives and provide feedback to the higher layer
through the same interface.

Table 2. Comparison between controllers.

Controller OpenFlow Version Language Creator

Floodlight 1.0 Java Big switch networks

(ODL)Open daylight 1.0, 1.3 Java Linux foundation

ONIX - - Google, Nicira

Floodlight-plus 1.3 Java Big switch networks

Beacon 1.0.1 Java Stanford university

Master 1.0 Java Rich university

NOX/POX 1.0, 1.3 Python, C++ Nicira

Ryu 1.0, 1.4 Python NTT labs
Source: Self-elaboration based on literature review.

c. SDN Simulation

Simulators play a crucial role in the research and development of networks, especially
in the context of SDN. These programs have the ability to recreate network environments
where data packets are sent through Ethernet ports and processed by switches and routers,
allowing the simulation of network operation. This simulation is fundamental for many
experiments in the field of networks, as it allows for the addition of new functions, relevant
testing, and evaluation of different scenarios. Subsequently, based on the results obtained
in the simulation, corresponding functions can be implemented in the real hardware
environment. Table 3 provides an overview of the most commonly used simulators today,
offering guidance for those seeking the right tool for their research and development needs
in the field of networks.
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Table 3. Comparison between Simulators.

Name Type OpenFlow Version Is It Open Source? Language Plataform

NS-3 simulator
Pre OF 1.0 and version of

OF-SID
that support MPLS

Yes Python, C++ GNUGPLv2

EstiNet emulator/simulator OF 1.3 and 1.0 Yes - LINUX

Mininet simulator

OF 1.3 of the reference user
switch

and NOX from CPq D and
Ericsson

Yes Python BSD open source

Source: Self-elaboration based on literature review.

Starting from the above, the analysis conducted from the systematic literature review
allows the classification of the variables related to SDN as shown in Table 4. This presents
a detailed view of SDNs, defining an architecture that addresses complex network prob-
lems through programmable networks. The separation of functions is explained, where
switch control is decoupled from the traditional network and completed through the con-
trol plane connected to the data plane by a standard interface. This architectural design
provides benefits such as the segregation of forwarding and control functions, software
adaptability, and centralized management of network status. These advantages find utility
across diverse domains like network virtualization, data centers, and cloud computing.
Additionally, the three implementation planes—application, control, and data—are de-
scribed, along with the use of standard protocols like OpenFlow and simulation tools for
pre-implementation testing.

Table 4. Variable Classification.

Aspect Description

Purpose Solve complex network problems through programmable networks.

Separation of Functions Decouples the switch control function in the traditional network, completing it through the control plane.

Standard Interface Connects the data plane and the control plane, maintaining only the switch identification for data exchange.

Architecture Decouples the data plane from the control plane, with unified interface standards.

Advantages Separation of forwarding and control, support for software programmability, centralized control of network state.

Areas of Application Network virtualization, data center network, wireless LAN, cloud computing, among other fields.

Application Plane Reflects user intentions and allows for the development of customized applications.

Control Plane Manages the underlying physical network, controlling SDN controllers, which can be commercial or open-source.

Data Plane Includes basic software/hardware-based devices that process network data according to instructions from upper layers.

Standard Protocols OpenFlow, XMPP, and others defined by the Internet Engineering Task Force (IETF).

Network Simulators Tools for simulating and creating SDN networks, useful for testing and experiments before implementation on
real hardware.

Source: Self-elaboration based on literature review.

4.1.3. Current State of AI

Since the proposal of AI at a group meeting at Dartmouth College in 1956, its ideas have
profoundly influenced human science and have been widely used in image recognition [43],
autonomous driving [44], pattern recognition [45], computer vision [46], and other fields.
The period between the 1940s and 1970s marked the first wave of AI, during which AI
focused on solving specific problems such as game rules, knowledge expression and
reasoning, and expert issues. These were based on specific tasks and adapted only to
specific scenarios. A typical example is the chess computer Deep Blue developed by
IBM, which uses a mixed decision-making method to calculate possible chess moves
and outcomes. The supercomputer decides the final chess move based on these results.
Although Deep Blue was capable of predicting four to six chess moves, its high algorithmic
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complexity and inability to be applied to any scenario other than chess made it difficult
to process large-scale data. As the scale of data increases, traditional AI methods can no
longer meet the requirements.

Humans have application requirements that are beyond specific scenarios. Hence,
scholars have directed their attention towards deriving rules from observational data, cul-
minating in the advancement of technologies like natural language processing (NLP) [47],
computer vision (CV) [48], and statistical machine learning (SML) [49], among others.
Subsequently, supervised learning [50], unsupervised learning [51], and semi-supervised
learning [52] within the realm of machine learning have emerged as focal points in artificial
intelligence (AI) research. These technologies remain the most widely used and closely
integrated algorithms in the field of AI. For example, in 2009, the open-source project
GraphLab launched by Carlos Guestrin from Carnegie Mellon University provided pow-
erful features, like the Application Programming Interface (API) [53]. The advantage of
GraphLab is that it includes thematic models, graph analysis algorithms, graph models,
clustering algorithms, and collaborative filtering algorithms, among others. Frameworks
make ML statistical models easier to apply to specific AI problems, however, they require a
large amount of data to drive the statistical ML algorithms.

The proposal of deep learning (DL) algorithms not only triggered a boom in DL re-
search and applications but also marked the entry of the third wave of AI to date [54].
DL has been widely used in voice recognition [55], image recognition [56], natural lan-
guage processing [57], and other fields. For example, the deep neural network-based
speech recognition system launched by Microsoft broke the existing speech recognition
framework and reduced the original speech recognition error rate by 20% to 30%. In
addition, there is a recent and promising AI technique called Large-Scale Language Models
(LLMs). These models represent significant progress in the dynamic field of AI, demon-
strating unprecedented potential in various areas such as finance, business, healthcare, and
cybersecurity [57].

LLMs have enabled the development of innovative applications ranging from chatbots
and virtual assistants to content creation tools and personalized recommendation systems,
which are briefly discussed in [58]. Regarding integration with SDNs, this is an area under
exploration. The authors of [59] have started to address some reviewing aspects focused on
the new frontiers and challenges of generative AI in 6G wireless intelligence.

4.2. Research on Motivations for Each SDN Plane Based on AI

Initially, the application of AI in SDN was limited to low-complexity scenarios such
as routing and security. Traditional SDN separated the control plane from the forwarding
plane, where the switch received instructions from the controller through a standard
interface and executed actions based on predefined rules. However, this traditional model
is no longer sufficient to handle the current traffic complexity and scale, especially in the
era of Big Data, where formulating precise rules based on data conditions is challenging.
Therefore, researchers are focused on enhancing intelligence and scalability in routing,
security, and SDN architecture [60]. The application of AI in the three planes—data, control,
and application—is being investigated and analyzed to understand their advantages and
disadvantages. This demonstrates that AI can be integrated into all aspects of SDN, yielding
beneficial results for the evolution and improvement of this technology.

4.2.1. Data Plane

Research related to the data plane addresses two main aspects: switch design and the
establishment of forwarding rules. In terms of switch design, the focus is on creating fast
and scalable forwarding devices capable of processing data flows quickly using flexible
matching rules. On the other hand, research on forwarding rules focuses on resolving
emergencies, such as coherence update issues after a rule failure. This research aims
to improve the efficiency and reliability of data forwarding in network environments,
contributing to the continuous development and innovation of technology in this field.
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Switches are categorized into hardware switches and software switches, with HP, Cisco,
Huawei, H3C, and Juniper dominating the global hardware switch market. Although hard-
ware switches have the advantage of storing and accelerating data forwarding, excessive
reliance on these devices can slow down and increase the cost of network updates. This
reliance can also lead to monopolization by large companies, limiting competition and inno-
vation in the market. The transition to software switches and the migration of some services
from hardware to software can reduce costs and increase network configuration flexibility,
eliminating barriers imposed by hardware manufacturers’ monopolies and promoting a
more competitive and innovative environment in the network equipment industry.

The International Forum on Software Switches provided a precise definition of soft-
ware switches as devices and systems that use program-controlled software to offer packet
network-based call control functions, enabling a wider variety of data processing meth-
ods. However, this increased functionality requires managing a large amount of code
and making modifications to the system core, demanding a high level of professional
knowledge from developers. To address this challenge, various clustering schemes have
been proposed to improve switch performance. As an illustration, Kawashima R. and
colleagues [61] devised a novel packet I/O framework named Netmap. This framework
facilitated the evaluation of performance among OVS, IP forwarding, Linux bridging, and
DPDK vSwitch configurations when deployed alongside OVS on Netmap. This study shed
light on the different available alternatives and their respective efficiency levels in data
packet processing.

Investigations into data plane forwarding rules primarily concentrate on two domains:
the advancement of fresh southbound interface protocols or the proposition of intelligent
protocols [62]. The segregation of the SDN control plane from the data plane provides a
consolidated programming interface for network administration, enhancing its adaptability.
Nonetheless, this division necessitates regular message exchanges between the OpenFlow
switch and the controller via the southbound interface. This continuous exchange can
overload the controller, resulting in delays in data path processing and high bandwidth
requirements for the channel. To address this challenge, Zheng and others [63] proposed a
southbound interface technology based on traffic characteristics, which could significantly
improve the efficiency and performance of the southbound interface.

Given the uneven distribution of network traffic, focusing on a wide variety of small
flows can be key to eliminating redundant routes, reducing transmission delays, and
optimizing the interaction of the controller’s southbound interface. Given the uneven
distribution of network traffic, it has been observed that focusing on a wide variety of
small flows can be key to eliminating redundant routes, reducing transmission delays, and
optimizing the interaction of the controller’s southbound interface. Recent research, such as
that by Pandey and collaborators [64], has identified similar issues in data center networks
with tree topology and proposed solutions such as a network-wide power manager and
related heuristic algorithms. However, these approaches, while useful to some extent, can
increase the computational load on the data plane. Therefore, it is necessary to explore data
plane-based algorithms that consider the growing data scale and save energy consumption
by reducing computational complexity, which could lead to more intelligent control of
routing and traffic in networks.

4.2.2. Control Plane

The control plane, the core of the network, is composed of the controller, which
supervises the switches in a centralized manner, streamlining data forwarding and en-
suring secure global management. Current research on controllers encompasses var-
ious aspects, from optimizing routing algorithms to enhancing security and efficient
resource management.

a. Research focuses on distributed controllers because a single centralized control
presents challenges such as the risk of a single point of failure and processing delays in
large-scale networks. Distributed controllers address these limitations by decentralizing
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management, improving scalability, and reducing processing times between domains
and switches.

b. Research on SDN controller security is vital, given its central role in the network.
Although the centralization and openness of the SDN architecture provide flexibility,
they also pose significant risks. Traditional protection methods rely on OpenFlow flows
but lack the capability to prevent attacks based on historical data. The introduction of
artificial intelligence algorithms allows for the construction of more intelligent and effective
security models. These models can leverage security information contained in historical
data to improve intrusion detection and prevention. Additionally, optimizing the control
plane through artificial intelligence can further enhance network security, enabling a faster
and more accurate response to real-time threats and contributing to the comprehensive
protection of the network infrastructure.

The application of artificial intelligence in SDN networks offers numerous advantages,
particularly in traffic prediction and management. The interconnection between network
status and human behavior patterns allows detailed analysis of coverage, user distribution,
and other aspects, facilitating precise predictions of traffic load and future congestion.
For instance, Tang et al. [65] propose a traffic load prediction algorithm based on deep
learning, combined with a channel allocation algorithm that intelligently resolves channel
allocation in SDN-IoT networks to avoid congestion. Khairi [66] explores SDN’s capability
to run machine learning algorithms and solve optimization problems centrally. These
studies demonstrate how artificial intelligence can significantly improve the efficiency and
management capacity of SDN networks, optimizing bandwidth use, reducing network
losses, and ensuring proper load balancing.

Integrating artificial intelligence technology into the control plane offers an opportu-
nity to enhance the security of SDN networks. For example, Hussain and collaborators [67]
propose defining security rules in the SDN controller and applying machine learning al-
gorithms based on historical data to predict potential attacks and restrict attackers’ access.
However, current methods face challenges as they lack real-time feedback for attack eval-
uation, and historical data alone may not be sufficiently accurate to identify and analyze
new types of attacks. Despite these challenges, applying artificial intelligence to the control
plane represents a significant step towards improving security in SDN networks, offering
the possibility to identify and respond more effectively to threats.

4.2.3. Application Plane

Within SDN networks, the application plane accommodates an array of applications
capable of programmatically transmitting network behavior requests to the controller via
the northbound interface. Studies in this realm are bifurcated into the enhancement of
northbound interfaces and the advancement of SDN applications. A milestone in the
evolution towards more dynamic and flexible networks was the Google B4 architecture [68],
which managed inter-data center connections but has not yet effectively addressed dynamic
traffic issues. Combining artificial intelligence technologies with SDN offers promising
solutions to these challenges. For example, Bu S. [69] proposed a robust traffic optimization
feature based on deep learning and feature selection algorithms. This method identifies and
eliminates irrelevant features in traffic data, ensuring symmetry, and then applies a model
generated through deep learning to optimize traffic. This integration of artificial intelligence
in the application plane enables more effective addressing of challenges associated with
dynamic traffic in SDN networks, improving their performance and flexibility.

However, Internet traffic presents complex nonlinear characteristics, making it difficult
to select robust features for classification and ensure optimal stability for machine learning
algorithms. Fatani [70] proposed an innovative method based on multifractal wave formal-
ization to extract multifractal features from traffic flow and apply a feature selection method
based on principal component analysis to obtain relevant features, eliminating irrelevant
and redundant ones. Other studies [71,72] compare methods such as Bayesian networks,
decision trees, and multilayer perceptrons, performing classifications based on different
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types of Internet traffic and content delivery traffic. Specific research evaluates the influence
of training dataset size on traffic classification performance, obtaining satisfactory results
for high-speed Internet traffic classification using approaches like Bayesian networks and
decision trees. These investigations represent significant advances in understanding and
efficiently managing Internet traffic, especially in high-speed and complex environments.

4.3. Standardization Process of AI-Based SDN

Currently, standardization organizations such as the Open Network Foundation
(ONF), the European Telecommunications Standards Institute (ETSI), the Internet En-
gineering Task Force (IETF), and Cisco (CISCO) are committed to standardizing AI-based
SDN technologies. These organizations have different approaches and define SDN stan-
dardization from various perspectives.

4.3.1. Open Network Foundation

The ONF is composed of companies such as Google, Deutsche Telekom, and Yahoo,
among others. The consortium collaboratively launches research aimed at advancing the
standardization and commercial deployment of SDN and OpenFlow technology. The ONF
is a user-centric entity committed to fostering and embracing SDN through the development
of open standards. Emphasizing an open and cooperative development approach from the
standpoint of end-users, the ONF introduced the OpenFlow standard, facilitating remote
programming of the forwarding plane.

The ONF task force scrutinizes the prerequisites of SDN, formulates OpenFlow guide-
lines tailored to satisfy the requirements of commercial deployments, and explores novel
standards to broaden the advantages of SDN. The technical community is segmented into
regions, councils, and groups. These regions tackle distinct SDN-related concerns and
are affiliated with SDN. They engage with foremost specialists worldwide in OpenFlow
standards to deliberate on concepts, frameworks, architecture, software, standards, and
certification pertaining to SDN. The Board of Directors furnishes comprehensive guidance
in the strategical, operational, and technical facets of the organization. The group serves
to help achieve the organization’s objectives and provide guidance and suggestions for
specific activities. As of late 2019, the progress of the ONF’s work can be seen in Table 5.

Table 5. Progress of ONF’s Work on SDN.

Classification Criteria Main The Progress

Specifications

Responsibilities OpenFlow related
standards as technical specifications
release, which may include protocol

definitions, information models,
component functionality and related

framework < documentation.

The SPTN OpenFlow protocol extension was released in
June 2017; the optical transmission protocol extension

protocol was released in April 2017; and the OpenFlow
switch specification version 1.5.1 was released in April 2015.

Technical advice

Including defining API, data model,
protocols, and all standards and

technologies such as information models.
The proposal is a normative document of

the ONF.

The core information model was released in November
2018; the device management interface configuration file
and requirements were released in October 2018; and the
OpenFlow configuration and management protocol 1.1.1

was released in March 2013.

Written documents
(white papers, use

cases, solutions
briefings, etc.)

Help further the ONF mission and open
network solution development and/or

deployment publications.

Released negotiable data path model and TTP signature in
September 2016; ONF SON Evolution released in

September 2016.

Source: Self-elaboration based on literature review.

Given that OpenFlow explicitly declares protocol headers to indicate the operations
that can be processed, increasing OpenFlow protocol headers will lead to greater system
complexity and reduced flexibility. To address the issues, ONF proposed the P4 concept.
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P4 is a high-level language for writing protocol-independent packet processors with the
following advantages: P4 programs, irrespective of the protocol, delineate the packet
handling procedures for switches. Target-independent P4 is adaptable for detailing a wide
spectrum of hardware, ranging from high-speed forwarding ASICs to software-based
switches. P4 enables the reconfiguration of fields, granting network engineers the ability to
alter the packet processing mechanisms of switches post-deployment. Therefore, some say
that SDN is the future of networking, and P4 is the future of SDN.

In December 2018, ONF held the “Next-Gen SDN Track” and proposed the combi-
nation of P4 and ML [73], which can enrich the network to obtain data. For example,
traditional networks can only obtain information from the access node and the delay be-
tween routes, whereas the introduction of P4INT (in-band telemetry) technology can obtain
collector ID, sequence number, timestamp, switch ID, input port, output port, hop latency,
and other information. By obtaining the aforementioned information, it can be understood
whether the data can predict network performance through ML technology and compare
P4INT prediction results. These are combined with traditional prediction results and use
previous prediction results to make correct circular decisions.

4.3.2. European Telecommunications Standards Institute

The European Telecommunications Standards Institute (ETSI) is a prominent inter-
national non-governmental organization of public nature. Its principal mandate involves
overseeing the exploration, advancement, and establishment of technical standards con-
cerning the Internet. Functioning as a research entity, it holds considerable influence within
the global internet sector. The ETSI Industry Specification Group (ISG) proposes applying
AI technology to network management systems to solve future network implementation
and operation issues based on the classical OODA (observe-orient-decide-act) model. Some
questions allow the system to adapt to adjust network settings and manage services with
open intelligent functions based on changes in parameters such as user needs, environ-
mental conditions, and business goals, to promote intelligent decision-making capabilities
under overall industry management. This process is referred to as experiential network
intelligence (ENI) [74].

The purpose of ENI is to define an architecture that combines AI technology and
context-aware metadata technology based on the OODA control loop model [75] to promote
changes in user needs and other changes in the decisions for adjusting the services provided.
The main challenges of this model include: adapting to complex automated decision-
making processes controlled by humans; determining the provision of services that can
meet SLAs based on environmental changes; defining the best way to visually provide and
manage network services to improve network maintenance and operations; providing an
experiential architecture (i.e., combined with an AI architecture) and other mechanisms to
improve understanding of the environment and experience. This model has the potential to
aid decision-making systems, like network management and control systems, in adapting
the services and resources offered based on alterations in user requirements, environmental
factors, and business objectives.

Since its establishment in February 2017, the ISG has been specifying a set of use
cases, derived requirements for technology-independent common system architectures,
and a differential analysis of ENI’s work on situational awareness and decision-based
standards. In the same year, the ISG specified the use of AI mechanisms to learn and make
decisions about high-level architecture and establish work items to create one or more
proof-of-concept (PoC).

4.3.3. Internet Engineering Task Force

The Internet Engineering Task Force (IETF) is a large-scale international public non-
governmental organization. Its main role involves overseeing the research, development,
and establishment of technical standards associated with the Internet. It functions as a
research body with a significant level of authority within the global Internet sector. In
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2017, the IETF proposed a draft on AI-driven networks (IDN) [76] to clarify the scope of
IDN work and explore possible standardization efforts. The draft first analyzed existing
problems with current methods, such as data and structural issues. Currently, the input
and output of AI algorithms can be numerical matrices or vectors, but network data is not
fully formatted or regular and needs to be translated or converted before and after the
algorithm. Therefore, to fully integrate network data with AI algorithms, this combination
must address deficiencies in data formatting, data compilation, etc.

Another issue is that prediction and autonomous decision-making based on AI must
be a rapid response process, and the entire process must avoid congestion as much as
possible. If it takes too long, then there is no point in applying AI algorithms to the network.
Therefore, the draft proposes a series of solutions around how to solve such a rapid response
problem. Then, the draft proposes a reference framework design method, which is of great
importance in the inference and ML processes. Finally, a 3-layer IDN reference model is
proposed, whose architecture can cover, explain, and support most current use cases and
scenarios, and possible standardization efforts are analyzed based on this model.

4.3.4. CISCO

Cisco has risen to prominence as the foremost provider of networking solutions
globally, attributed to its profound comprehension of the economic model of networks and
cutting-edge technology. Its purpose is to provide strategic, innovative, and high-quality
technology and solutions to the global market. In October 2019, Cisco held a global online
event called “Networking.Next” and released Cisco’s “Global Networking Trends 2020”
based on the results of the external organization’s IDC survey. The report describes the
trend toward establishing Cisco’s digital network readiness model. From the initial manual
operation island to end-to-end management and manual operation in the information age,
policy automation based on controllers in each domain is now realized on the basis of SDN.
On this basis, combined with other technologies such as AI, each domain meets business
needs and, finally, continues to meet dynamic business needs across all domains. The
report highlights that, in past business processes, SDN played a vital role in providing
continuous service performance and protection for the business in terms of automation.
However, in subsequent business work, network enterprises still need to continuously
monitor and optimize the network.

SDN alone cannot support an increasingly dynamic and digital business model. There-
fore, it is necessary to understand changing business intentions and monitor the dynamic
network conditions to continuously adapt to demand. Intent-based networks capture
business intent and use analytics, ML, automatic reasoning, and automation to enable the
network to continuously and dynamically adapt to changing business needs while adapting
to changing network loads and other environmental influences. This can mean contin-
uously applying and guaranteeing service performance requirements and user, security,
compliance, and network technology operational strategies across the network [77].

Based on the above analysis of the systematic literature review, it is possible to classify
the related intelligence variables as presented in Table 6. The variables involved in each
of the three SDN planes are presented below: the data plane, the control plane, and
the application plane. In the data plane, aspects such as the design of switches at both
hardware and software levels, the definition of forwarding rules, the development of new
southbound interface protocols, and the implementation of AI technologies to improve
network performance and efficiency are addressed.
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Table 6. Classification of SDN Planes Based on AI.

Plane Variables References

Data Plane

Switch design (hardware and software) [61]

Forwarding rules [62]

Development of new southbound interface protocols [63]

Intelligent protocols [62]

Implementation of AI technologies [64]

Control Plane
Research on distributed controllers [65]

Research on controller security [65]

Integration of AI algorithms [66]

Application Plane
Development of northbound interfaces [69]

Development of SDN applications [68]

Implementation of AI technologies [70–72]
Source: Self-elaboration based on the results obtained in the literature review.

In the control plane, research related to distributed controllers, controller security, and
the integration of AI algorithms for network management and optimization is highlighted.
Finally, in the application plane, the development of northbound interfaces for interaction
with users and external systems, the creation of specific applications for SDN, and the
implementation of AI technologies to improve the functionality and adaptability of the
developed applications are mentioned. Together, these variables reflect the complexity and
diversity of research areas within the field of SDN, encompassing everything from low-level
technical aspects to practical applications and the integration of emerging technologies
such as AI.

4.4. Key Technologies and Research Methods

SDN is attracting the attention of both national and international research organiza-
tions. Artificial intelligence is being applied to analyze data and optimize networks under
the centralized control and management of SDN, making administration more intelligent.
This section will review AI technology to solve specific problems in SDN networks, such as
intelligent routing optimization, intelligent network security methods, and AI-based traffic
engineering. A brief introduction to the key technologies and research methods used in
applying AI to specific problems in SDN networks will be provided.

4.4.1. Intelligent Route Optimization Method

Routing is a crucial function in networks, especially in SDN, where the controller
guides traffic by modifying the flow tables of switches. Inefficient routing strategies can
result in data loss, load imbalance, and inadequate resource utilization. Therefore, it is
vital to develop effective routing strategies. Currently, most of these strategies are based
on shortest-path optimization. For SDN, routing research focuses on optimization and
defining routing. This section will briefly introduce an intelligent routing optimization
method that addresses both aspects. This approach involves improving existing routing
strategies and developing new strategies specifically designed for SDN, leveraging the full
potential of SDN to enhance the efficiency and performance of data routing.

4.4.2. Strategy Optimization

SDN emerged as a solution to problems such as network complexity, centralized
management, and vendor dependence. In current SDN networks, routing algorithms are
based on Dijkstra’s algorithm, which seeks the shortest path for data. However, a protocol
called IPRDR has been developed for medium-sized hybrid data centers, routing traffic
to devices with optimal power routes, though it is not suitable for broader scenarios [78].
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Chen Y. [79] proposed an efficient SDN routing based on Q-learning to prevent congestion,
but it is only applicable to certain traffic patterns. For more complex situations, additional
factors must be considered. Future research should address energy optimization and
congestion management in SDN networks, especially in data center environments. This
involves developing algorithms that can adapt to various network conditions and improve
efficiency and performance in terms of energy and congestion. The application of ML
techniques and consideration of more complex variables can lead to more effective solutions
for routing challenges in modern SDN networks.

Sharathkumar [80] develops new routing strategies, highlighting traffic prioritization
as key. The study proposes a multi-packet forwarding framework that integrates ML and
SDN to prioritize and route flows according to priority and network status. However, this
approach does not consider user experience or quality of service requirements when as-
signing multiple routes [81]. With the increase in wireless networks, traffic control becomes
crucial, as traditional routing protocols do not learn from past experiences. Finogeev [82]
addresses this challenge with an intelligent flow control method based on DL, using deep
convolutional neural networks (DCNN) to improve the performance of wireless networks
by reducing delay and packet loss. This innovative approach seeks to solve congestion
problems and improve the efficiency of the wireless mesh network (WMN). The rapid ex-
pansion of wireless networks has made effective management of network traffic, including
routing techniques in wireless backbone networks, a significant challenge [82].

4.4.3. Software-Defined Routing

The core infrastructure of the Internet and heterogeneous backbone networks has
maintained a similar configuration over the years, with routing algorithms that, in princi-
ple, have remained quite consistent. As the network has grown in size, the core Internet
data has evolved by adding more routers and links, and this growth continues. Although
the advancement of software-based routing strategies has lagged behind traditional strate-
gies, software-defined routing (SDR) offers a cost-effective and scalable platform for packet
processing, known as a programmable router. Both academia and industry are exploring
the use of multicore processors to perform routing tasks in parallel, thereby improving
processor performance. This multicore platform has allowed SDR to incorporate AI tech-
nologies, such as DL, to manage routing paths more efficiently. This advancement has
sparked the interest of researchers and professionals in the field, as evidenced by the
increase in the number of studies exploring this combination of technologies [83,84].

Currently, many researchers are immersed in research on software-defined routing
(SDR). Musa [85], for example, applied a supervised DL approach, using traffic data
from nodes and routers as input, to build routing tables. The results showed significant
improvements in the backbone network, known as routing control. However, this method
does not address security concerns at the network layer. On the other hand, Hou [86]
proposed a DL-based graph approach to generate distributed routing protocols. Unlike
Musa’s method, this approach is topology-independent, making it applicable to a wider
variety of network configurations. SDR offers flexibility by programming network devices
for various purposes, eliminating the need for specific third-party hardware. This approach
represents a promising advancement in improving the efficiency and security of networks.

4.4.4. Smart Methods for Network Security

SDN technology relies on a centralized controller that simplifies network management,
offering optimal programmability. However, this centralization exposes the network to
significant security risks. Attackers can exploit the accessibility of the network center
to carry out encoded attacks, compromising the overall network security. Farris [87]
examined security mechanisms in SDN, addressing issues such as the development of
secure controllers, the implementation of security modules for controllers, and the defense
against DoS/DDoS attacks. Additionally, specific security aspects related to the northbound
direction, such as the protection of interfaces and applications, were explored. The global
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view of the SDN controller facilitates the collection and analysis of network traffic, enabling
immediate responses to detected attacks. Numerous studies have been conducted on
AI-based intrusion detection in SDN networks, including DDoS attack detection. This
section will provide a comprehensive review of intelligent security methods applied to
networks, highlighting the importance of addressing inherent SDN vulnerabilities to ensure
the integrity and protection of the network as a whole.

Intrusion detection seeks to identify abnormal accesses to ensure network security by
classifying traffic into normal and attack flows. AI methods use attributes and labels to
describe each flow and determine relevant techniques to detect anomalies. For instance,
Alamri [88] employed ML algorithms to define security rules in SDN controllers and
prevent malicious access. However, this approach only addresses specific attacks and
does not cover the detection and control of suspicious traffic. Additionally, undiscovered
vulnerabilities persist in SDN controllers, allowing attackers to continue posing threats. To
address these concerns, Kumar [89] proposed an SDN and ML-based intrusion detection
system that detects threats in real time and includes a response system. This system uses
reactive routing to analyze the impact on SDN and has been evaluated using public and
real-time data. A comprehensive security design can withstand various SDN vulnerabilities
and defend against a range of potential attacks, emphasizing the importance of adopting
proactive approaches to safeguard network integrity.

Santos et al. [90] presented ATLANTIC, an SDN-based framework for detecting,
classifying, and mitigating network anomalies. The framework comprises two stages: a
lightweight phase for traffic monitoring and a heavyweight phase for anomaly classification
and mitigation. In the lightweight phase, the deviation of flow table entropy is computed
utilizing information theory principles, while the heavyweight phase employs the same
principle to determine flow table deviation. Anomalous traffic is classified using the
support vector machine (SVM) algorithm, with various techniques applied for classifying
anomalies based on their severity. Leveraging the gathered data, each traffic profile is
individually analyzed to obstruct malicious traffic.

DDoS attacks pose a serious threat to SDN network security by attempting to over-
whelm system resources with false requests from many machines, complicating the han-
dling of legitimate requests. These attacks exhaust network, storage, and computing
resources in both the data and control planes, rendering the SDN network inoperable.
Therefore, detecting DDoS attacks is crucial to maintaining normal SDN network operation.
AI is essential for identifying and classifying traffic as malicious or benign, thereby reducing
intrusions and DDoS attacks on SDN controllers or switches [91]. Niyaz [92] developed a
DL-based DDoS detection system, integrated as an application in the SDN controller, using
algorithms to reduce the features derived from network packets, proposing a DDoS detec-
tion approach in SDN environments. Although these algorithms are efficient at reducing
features, they cannot directly extract features from the original traffic bytes.

SDN-based DDoS traffic detection faces significant challenges in adapting to the
specific requirements of applications. Chen [93] used the XGBoost classifier along with the
SDN controller to improve DDoS detection; however, these requirements have not yet been
fully met. For example, the traffic threshold for DDoS attack detection may vary between
different applications, but current solutions do not incorporate mechanisms to adjust to
these requirements and establish the corresponding restrictions. Additionally, most SDN-
based DDoS traffic detection solutions use a single controller, which can create traffic
bottlenecks and single points of failure in the network. Although SDN offers centralized
control over a distributed network, current solutions have yet to fully leverage this potential
and must address these challenges to improve the effectiveness of DDoS traffic detection in
SDN environments.

4.4.5. AI-Based Traffic Engineering

Traffic engineering (TE) is essential for enhancing data network performance through
analysis, prediction, and dynamic regulation of transmitted data behavior. Although much
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of the research in SDN has focused on developing its architecture, SDN simplifies network
management, reduces operational costs, and fosters innovation. Its unique features provide
great potential for TE technologies, improving traffic control and network management.
The advantage of SDN-based traffic engineering lies in its real-time reaction capability and
scalability to handle large traffic volumes necessary for Internet applications.

There is an urgent need to develop a new network architecture and more intelligent
and efficient TE tools to address the rapid growth of cloud computing and the demands
of large-scale data centers. This new architecture must be capable of classifying and
managing various types of traffic from different applications quickly and effectively, thus
improving resource utilization and system performance. Integrating AI technology with
SDN provides a detailed network management approach, allowing operators to handle
diverse services and allocate resources more effectively. By anticipating dynamic traffic
changes and developing appropriate response strategies, AI-based traffic engineering
achieves precise and efficient network optimization. This approach focuses on traffic
classification and identification, as well as dynamic traffic scheduling optimization, with
research aimed at developing more advanced and effective methods to improve network
management and performance.

4.4.6. Traffic Classification

In the context of data flow in SDN-based networks, two predominant classification
methods are employed. One method distinguishes between “elephant” and “mouse”
traffic [94], where elephant flows represent large and continuous traffic, while mouse
flows are smaller in quantity and shorter in duration. The other method classifies traffic
according to quality of service (QoS) [95,96]. In data centers, although 80% of the traffic
consists of mouse flows, 20% of elephant flows consume 80% of the available bandwidth.
Therefore, identifying these flows is crucial for efficiently managing traffic in the data center.
Although SDN offers flexible management through flow control, this detailed management
can generate considerable bandwidth consumption between the data and control planes,
limiting the scalability of SDN-based data centers. The “elephant and mouse phenomenon”
highlights the importance of effectively detecting and redirecting elephant flows to improve
traffic management in these environments.

However, to address the challenges of high bandwidth consumption and long de-
tection times in identifying elephant flows, Liu [97] proposed the Efficient Sampling and
Classification Approach (ESCA). This approach consists of two stages: first, ESCA improves
sampling efficiency by estimating the arrival interval of elephant flows and using a flow
filter table to eliminate redundant samples; second, it employs a new supervised classifica-
tion algorithm to categorize the samples. While this reduces bandwidth consumption and
processing time, it has limitations, as it does not meet the granularity requirements of SDN
data centers and campus networks, and the high computational load affects the scalability
of the measurement system.

The goal of QoS-based traffic classification is to identify QoS traffic classes, which
becomes challenging with the massive growth of Internet applications. Instead of identi-
fying all applications individually, it is more practical to classify traffic according to their
QoS requirements. This involves dividing applications into different QoS classes based
on criteria such as jitter and loss rate. Applying AI algorithms enables multidimensional
analysis of key performance indicators (KPIs), the discovery of new correlations, and the
prediction of QoS violations. Additionally, it facilitates handling incomplete or corrupted
data through data cleansing techniques and supports a scalable architecture capable of
collecting data from both the virtual and real worlds. Thus, AI algorithms can predict QoS
in big data environments and uncover additional correlations between rules [98].

4.4.7. Traffic Scheduling

In modern networks, the need to continuously adapt processing strategies to main-
tain optimal performance is due to the high spatiotemporal variability of traffic. This is
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demonstrated by the inherent diversity observed in contemporary telecommunications
networks across various layers and time intervals, including unforeseen fiber outages and
variations in the quality of wireless channels [99]. Additionally, the rising prevalence of
smartphones and tablets as the principal devices for accessing the Internet results in an
escalating demand for traffic, subsequently influencing network stability. These fluctua-
tions in traffic demand, both in time and space, indicate the necessity of adapting input
conditions to maintain optimal system performance and ensure network stability.

Additionally, online network optimization (ONO) faces the challenge of maintain-
ing stable system performance when the actual flow situation differs from the expected
situation. To address this, the flow table matching strategy in SDN reflects the dynamic
processing of traffic. Jing [100] analyzed packet structure and proposed a packet matching
model based on F-OpenFlow fields, allowing system performance to be adjusted according
to actual network conditions and ensuring optimal or stable performance in most expected
flow situations.

The proposed method aims to improve the matching probability of table entries
by grouping matching fields and employing metaspace search to analyze the flow table
structure in the network. It uses the Dictionary Tree Analysis Model to handle dynamic
fields and achieve efficient optimization. However, it does not utilize historical data,
resulting in insufficient accuracy in the relationship between message locations and flow
tables, limiting the improvement of the hit rate and the flow table matching speed.

4.4.8. Traffic Prediction

Network traffic exhibits self-similar, multi-scale, and highly nonlinear characteristics,
which determine its predictability. For effective network management, accurate and timely
data is required for both short-term tasks and long-term planning and anomaly detection.
For example, during network congestion, traditional routing cannot adjust quickly, causing
issues such as high latency and packet loss. Active prediction methods, such as those
used for detecting DDoS attacks, can provide early warnings. Azzouni [101] proposed
NeuRoute, a dynamic routing framework that addresses these needs.

In NeuRoute, Long Short-Term Memory (LSTM) is employed to estimate future
traffic, while Soud [102] develops a DL model to predict traffic. This model combines
regularization and hyperbolic tangent layers to address various traffic scenarios, from
free flow to congestion. The DL architecture can capture nonlinear effects, such as abrupt
transitions between networks. Therefore, using DL methods for traffic prediction results in
smarter routing, as the model is trained with real-time traffic data.

Although AI methods can address traffic prediction, determining the best one for all
cases is challenging. Prediction accuracy depends on the amount and quality of traffic
data used to train the model. Generally, neural network-based algorithms tend to offer
better predictive capability and robustness than conventional models. However, most
current traffic prediction methods remain superficial and do not fully meet practical needs.
Therefore, it is essential to systematically analyze the literature to classify traffic-related
variables, as detailed in Table 7.
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Table 7. Classification of Variables According to Technologies and Methods.

Variables Technologies and
Methods Definition References

Route Optimization

Dijkstra’s Algorithm Method for searching the
shortest path in a network. [78]

Intelligent Energy
Reduction Decision
Routing Protocol

Protocol for routing traffic by
optimizing energy
consumption.

[79,84]

Q-Learning-Based
Efficient SDN
Routing

Routing method based on
reinforcement learning to
avoid congestion.

[19,79]

Routing Strategies
from the Perspective
of Traffic Priority

Approach that prioritizes
important traffic to avoid
bottlenecks.

[80]

Software-Defined
Routing

Supervised DBA
Routing approaches use
supervised algorithms to
improve efficiency.

[50]

Graph-Based DL
Routing method using neural
networks to learn and adapt to
the network.

[86,87]

Intelligent Methods
for Network Security

AI-Based Intrusion
Detection

Use of AI algorithms to
identify and respond to
network intrusions.

[88,89]

Network Anomaly
Detection and
Classification

Identification of anomalous
behaviors in the network to
prevent attacks.

[89]

DL-based DDoS
Attack Detection

Use of DL techniques to
identify and mitigate DDoS
attacks.

[92,93]

AI-Based Traffic
Engineering

Traffic Classification Process of categorizing traffic
into different classes or types. [71,72,95,96]

Traffic Scheduling Methods for managing and
directing traffic efficiently. [100]

Traffic Prediction
Utilization of prediction
algorithms to estimate traffic
behavior.

[65,101,102]

Source: Self-elaboration based on the results obtained in the literature review.

Considering the previously mentioned variable groups and the bibliometric review
conducted, the research agenda for SDN can be understood as shown in Figure 8. Some
terms that are losing relevance include “network routing” and “reinforcement learning”,
as their emergence was around 2020, they were predominantly used that year, and they
lost relevance between 2022 and 2023. Subsequently, terms such as “learning systems”
and “information management” emerged around 2019, peaked in relevance in 2021, and
lost significance in 2022. Regarding the term “network architecture”, although it emerged
around 2020 and reached its peak relevance in 2022, it remains pertinent. Therefore, the
research agenda can be oriented towards “ML”, “application programs”, and “SDN”, as
these terms emerged around 2022 and are still relevant.
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4.5. Future Challenges and Network Scenarios

While AI technology can initially solve some SDN problems, challenges remain be-
fore AI can be fully integrated with SDN. These include high-quality data, inter-domain
communication, scalability, and security prediction. Additionally, this section will analyze
how to use AI to fully integrate SDN. The advantages of centralized SDN control combine
with development trends in fields such as 5G, network function virtualization, IoT, edge
computing, information center networks, and wireless networks.

4.5.1. Future Challenges

High-Quality Data
Although mature big data processing technologies and AI-based data analysis tech-

nologies exist, AI algorithms are proposed in the field of image processing rather than in
the field of networks. Most algorithms cannot be transferred or used directly in network
scenarios, and network data is incomplete. To meet the data format requirements of AI
algorithms and apply AI to the network, network data must be translated into matrix or
vector form in advance. Therefore, the prerequisite for applying AI to SDN for accurate
classification prediction is that training is precise and of high quality, compensating for
deficiencies in data analysis formats, data compilation, etc. Current problems are mainly
divided into two aspects: on the one hand, the size of the SDN network dataset, SDN
network characteristics, and the AI-based SDN network model have not yet formed. On
the other hand, high-quality data can only be cleaned manually, and no public datasets
are available for researchers to experiment with. Therefore, all parties need to integrate
high-quality public network datasets.

a. Inter-Domain Communication

The emergence of multiple controllers aims to solve the disadvantages of increased
complexity between switches and controllers caused by network-scale expansion. Research
has shown that inter-domain information exchange is beneficial for improving network per-
formance. However, data flow transmission between domains requires multiple controllers;
such inter-domain design breaks the original SDN modularity. To account for the increase
in multiple controllers and network complexity, traditional optimization methods are no
longer sufficient to optimize the network. Although AI algorithms can be used in network
optimization at all layers, analyzing the collected inter-domain information, including data
link layer information, application plane information, and other information to optimize the
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network, such as routing mechanisms, congestion control, load balancing, etc., inter-layer
optimization methods based on recursive multi-layer networks are required. Moreover,
there is no mature model for inter-domain communication that facilitates future research.

On the other hand, inter-domain communication involves too many parameters,
often affecting the entire system. Optimization algorithms that are truly suitable for inter-
domain communication are lacking. Although many target optimization algorithms can
solve the above problems with fewer parameters [103], in real situations, multi-objective
optimization algorithms will cause the Pareto non-dominated problem to fail due to too
many parameters, leading to the failure of the entire optimization method. Therefore, the
current research aim is to establish inter-domain communication problem models and
optimization methods as soon as possible.

b. Scalability

The advantages of centralized SDN control and management have increasingly at-
tracted researchers from academia and industry to dedicate themselves to this field. While
SDN offers significant opportunities for network development, it encounters numerous
practical obstacles. For instance, as the network scale expands, increasing the number
of controllers is necessary to share tasks and enhance the performance of the centralized
controller. However, as the number of controllers increases, issues related to controller
placement and dynamic control arise [104].

From this perspective, to improve the scalability of SDN networks, a multi-level RL
(reinforcement learning) scheme can be considered, where the root controller acts as a high-
level learning agent and the local controller as a low-level learning agent. Each lower-level
learning agent acquires knowledge of directing traffic within its domain by leveraging the
state information of its immediate network, thereby making optimal decisions. Conversely,
the higher-level learning agent oversees inter-domain traffic management by maintaining
a global perspective of the entire network. To expedite system responsiveness, the root
control intermittently deploys the trained reinforcement learning (RL) model within the
local controller. This trained RL model then directs the local controller to process inter-
domain traffic directly. The multi-tiered RL approach not only diminishes the latency
in handling commercial flows but also bolsters the scalability of the SDN network [105].
Despite the theoretical consideration of controller categorization to enhance SDN scalability
using the reinforcement learning framework, there is no real-world scenario to validate the
feasibility of the algorithm. Therefore, real-world situations must be considered to ensure
the robustness of the entire system.

c. Security Prediction

In the previous section on network security, it was explained that the SDN controller
uses AI to analyze historical data, detect network anomalies, and address network attacks.
However, anomaly detection is an adversarial process. Although a mature model can
be constructed using historical data to predict the next attack, malicious attackers rarely
succeed in the same manner; they continuously create new attacks to evade controller
detection [106]. In this context, using historical data to train an AI model is not an effective
attack detection method, as it requires creating new attacks for detection. To address the
aforementioned issue, two solutions can be adopted.

One solution is the Generative Adversarial Network (GAN) [107]. GAN is a method
to resolve problems by predicting new attacks. GAN consists of two neural networks: a
generative neural network and a discriminative neural network. The generator generates
fresh data, while the discriminator assesses the genuineness of the new data by comparing
it with the authentic training dataset. Both the generator and discriminator undergo joint
training to enhance the realism of the newly generated data. GAN has the capability to
produce potential new attack data by leveraging historical data and integrating this newly
generated data with historical data to train the machine learning (ML) model. This trained
ML model can detect both known and potential new attacks. Upon detecting an attack, the
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controller proactively adjusts the flow table in the switch to thwart network attacks and
restrict communication between the control plane and the data plane.

Another method employs a prior-posterior experience model [108]. Prior experience
and posterior experience can, respectively, represent historical network data information
and real-time feedback information during the detection process in the model. This method
retains historical information’s impact on controller detection while incorporating real-time
feedback information into the model to correct it. This approach can accurately and in
real-time analyze network attacks to ensure the network does not suffer new attacks and
cause severe consequences.

4.5.2. Applications in Different Network Scenarios

a. Fifth Generation Networks (5G)

5G networks are poised to accommodate a growing multitude of connected devices,
furnish elevated user data rates, facilitate augmented mobile data traffic per unit geo-
graphical area, and diminish transmission latency and network power usage. In addition
to possessing precise performance prerequisites, 5G also necessitates catering to hetero-
geneous services, devices, and access networks [109,110]. By separating the control and
data planes, SDN significantly simplifies the network structure, reduces control signaling
between network nodes, and improves load balancing, mobility management, and network
control flexibility. The literature [111] proposes a centralized wireless network controller
based on SDN to control multiple nodes and gateways in the core network. The purpose
of the 5G network architecture based on ISDN is to meet the functional and performance
requirements of a new generation of services and devices. A key feature is the flexibil-
ity required to effectively support heterogeneous service sets, including machine-type
communications and IoT communications.

These applications face significant challenges regarding latency, reliability, and end-
to-end availability. Challenging objectives in terms of scalability have been added. To
address the challenges posed by the heterogeneous wireless environment, the complexity
of network management, the growing needs of mobile communications, and the diversified
service requirements in 5G mobile networks, AI technology should be used to implement
smarter networks in motion [112].

b. Network Function Virtualization (NFV)

NFV enables the deployment of virtual network functions to improve performance,
security, and management. Network functions are decoupled from the underlying ded-
icated hardware through NFV to provide flexibility in network architecture. NFVs are
implemented in software running on real-world commercial devices and can be centrally
controlled via an ISDN controller. Compared to traditional network functions implemented
by dedicated hardware devices, NFVs have significantly lower operational and capital
expenses and the potential to improve service agility. With the application of NFV, nu-
merous related studies have become crucial services promoting network flexibility and
cost-effectiveness. For instance, RL is used to dynamically create service function chains
(SFC) based on resource usage to support efficient service delivery [113,114]. Combined
with AI concepts, the online routing problem of SDN with NFV can be described as a
linear programming model. According to this architecture, the required delay can be
obtained based on resource conditions in the network, load, resource utilization, and other
data to promote dynamic service delivery and optimize network resource utilization. For
example, the network function allocation problem is described as a two-stage Stackelberg
game, where the server acts as a network function seller and the user as a network func-
tion buyer. Wu [115] applied the RL algorithm to obtain the optimal network function
allocation strategy.

c. Internet of Things (IoT)

IoT has become a global network infrastructure by connecting many different het-
erogeneous devices using heterogeneous communication technologies (wired/wireless).
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Because of the extensive coverage and high mobility associated with these devices, a range
of radio access technologies have found widespread application in the IoT. Nonetheless, the
intricate nature of heterogeneous communication technologies and device infrastructure
poses numerous significant challenges. For instance, as the number of devices increases, the
traffic load on switches can become exceedingly burdensome, necessitating the appropriate
allocation of multiple channels to links. Furthermore, heterogeneous devices have different
strategies for data detection and collection, leading to the occurrence of uneven traffic
bursts arriving at the switch [116,117]. To better adapt to large-scale heterogeneous IoT,
ISDNs have become a novel solution for connecting distributed heterogeneous devices
to centralized shared systems, termed Intelligent SDN-IoT. Within Intelligent SDN-IoT, a
multitude of devices are extensively distributed across the sensing plane. The sensing data
amassed by this plane is relayed and conveyed to the gateway via switches situated in the
data plane. AI technology is used in combination with partially overlapping channel allo-
cation to solve adaptive channel allocation issues and ensure the QoS of communications
in wireless networks.

d. Edge Computing

Edge computing (EC) entails the deployment of computing and storage resources at
the periphery of the network. Within edge computing, the term “edge” encompasses any
computing and networking asset positioned between the data source and the cloud data
center [118]. The integration of SDN intelligence with edge computing can yield advantages
across various domains, including enhanced resolution and control, increased flexibility
with fewer innovation hurdles, implementation centered around services, mobility of
virtual machines, adaptability, interoperability, cost-effectiveness, and extensive coverage.
Nonetheless, both Smart SDN and the current standardization of OpenFlow are not yet
sufficiently developed to handle all the potential use cases and management operations
outlined. As requirements change rapidly, even the relatively new standards-based realm
of infrastructure as a service is also constantly evolving. Faced with increasingly complex
requirements, merely deploying SDN-enabled network devices will not easily integrate
SDN into existing networks. Moreover, the investment cost in hardware is very high, and
therefore, smart SDN-supporting hardware cannot reach the required level in terms of
functionality and deployment. Using AI technology to provide finer control granularity
and abstraction granularity offers more possibilities in use cases and management.

e. Information-Centric Network (ICN)

ICNs represent an architecture designed to furnish users with content accessibility
through names as opposed to establishing communication channels between hosts [119].
Integrating SDN functionalities into ICN amalgamates the network control plane with
the data plane, thereby facilitating centralized programming and network control from
a holistic standpoint. The amalgamated SDN-ICN framework, which combines ICN and
SDN, proves advantageous in capitalizing on the data autonomy of the data plane within
ICN and the centralized control afforded by the control plane in SDN for enhanced global
network management. Initially, content devoid of address constraints in ICN is routed and
forwarded as an autonomous entity at the network layer. Centralized scheduling facilitated
by SDN can optimize the allocation of network resources [120,121].

There are numerous computing nodes in SDN-ICN. The use of AI can simultaneously
learn with ICN, reducing the delay caused by ICN data processing. Therefore, due to
the use of rich computing resources scattered across various SDN nodes, it can address
the computation time issue during the AI model training process. Secondly, based on the
unification of data collection and analysis from a global perspective, multi-scale traffic
prediction can be achieved with flow-oriented characteristics for greater accuracy. Multiple
switches in distributed SDN collect features of the requested target content. These features
contain inherent spatiotemporal and social correlations, which DL networks can compre-
hend from a global view. Consequently, due to the unsupervised learning capabilities of
DL networks, they can find the distribution pattern of content popularity without missing
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small pattern changes, thus improving prediction accuracy. Foremost, SDN-ICN holds the
capability to modify the structure of the DL network. This stems from the programma-
bility inherent in SDN and the overarching control exerted by the SDN controller over
the network. Consequently, hidden layers and neurons within SDN-ICN can be readily
reconfigured at each layer. Leveraging this programmable infrastructure, diverse network
models can be seamlessly integrated to address computational challenges encountered
within the SDN-ICN framework [122].

f. Wireless Network

A wireless network (WN) consists of many nodes and transmits through wireless
channels. Unlike wired networks, wireless network channels always change with user
mobility, channel fading, and interference. In dense wireless networks with mobile users
and small cell sizes, channel capacity changes are more challenging to handle [123,124].
Integrated SDN-based solutions can support user mobility in dense wireless networks,
making it possible to implement software in traditional and emerging wireless environ-
ments. Software-Defined Wireless Networks (SDWNs) have raised concerns about the
inherent security of the SDWN architecture [125,126]. The SDWN paradigm faces security
challenges akin to those present in the traditional wired SDN framework, exacerbated by
the introduction of the wireless medium, which introduces additional avenues for attacks.
Attackers can target the control plane, data forwarding elements, and individual wireless
applications. Despite the controller’s susceptibility as a single point of failure, its dynamic
migration across network servers enhances resilience against potential compromises to
the control plane. Furthermore, the comprehensive network visibility afforded by global
monitoring empowers security administrators to monitor real-time traffic statistics and
adapt security policies promptly as required.

Moreover, SDWN environments can leverage the capabilities of individual nodes to
implement security at different parts of the network chain, thereby establishing a layered
security model without overburdening a single network entity. Thus, if the existing central-
ized SDWN design is used appropriately, the framework itself can be transformed into a
programmable security barrier, including functions that can be changed via programmable
data plane equipment. Combining AI-related technologies with SDWNs to address SDWN
security issues, integrating historical data analysis to predict malicious attacks, and accu-
rately and effectively improving SDWN security and reliability are crucial. In SDWNs, ML
algorithms play a vital role in managing numerous heterogeneous sensor nodes, optimizing
each node’s resource utilization, and flexibly and efficiently scheduling communication
links. Currently, routing optimization, node clustering, and data aggregation in wireless
sensor networks, event detection and query processing, positioning, intrusion detection,
fault detection, and other problems use ML technology [127].

g. WiFi

The authors in [128] propose integrating SDN and ML techniques to improve op-
erational efficiency and QoS in wireless local area networks (WLANs). This offers an
innovative approach to wireless network management, enabling dynamic adaptation and
smarter, data-driven decision-making. The second study [129] provides a comprehensive
overview of advances in optimizing wireless networks through SDN and AI techniques,
highlighting the potential benefits of this integration, including improved performance,
efficiency, and security of WiFi networks. Finally, Ref. [130] presents a specific approach
using an ML-based SDN controller for managing wireless LANs. This proposed model uses
ML algorithms to optimize resource allocation and enhance WiFi network performance,
demonstrating AI’s potential to optimize network operations in wireless environments.
Collectively, these studies emphasize the crucial role of integrating SDN and AI in the
evolution of wireless networks, opening new opportunities for continuous performance
and efficiency improvement [131]. WiFi challenges with ISDN include refining AI algo-
rithms for more dynamic optimization, ensuring data security and privacy, exploring the
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scalability and interoperability of proposed solutions, and experimentally validating their
effectiveness in wireless network environments.

h. Other Application Trends for ISDNs

The convergence of diverse advanced technologies is transforming industrial IoT
and cloud computing, optimizing the efficiency and reliability of productive services, and
managing critical infrastructures. Four key approaches stand out in this field.

The authors of [132] introduce a precision mechanism to allocate resources in edge
computing, improving operational efficiency in smart cities. This approach allows an adap-
tive and dynamic response to changing demands, ensuring optimal management of urban
resources. In [133], the authors address semantic segmentation in networks (Unmanned
Aerial Vehicle—UAV). Techniques such as convolutional neural networks and generative
adversarial networks correct biases in training data, improving the accuracy and reliability
of segmentation models. Additionally, in [134], researchers apply deep neural evolution net-
works to detect faults in the interconnection of cloud data centers. This method combines
deep learning and evolutionary algorithms, allowing accurate and timely identification of
failures, as well as improving operational resilience. Finally, in [135], the authors explore
the use of federated learning for productive service procurement in industrial IoT. This
approach, inspired by the human brain, facilitates decentralized learning, preserves data
privacy, and improves the efficiency and security of industrial processes. Together, these
developments represent a significant leap towards optimization and security in resources
and services management for industrial and urban environments, highlighting the trans-
formative potential of emerging technologies in IoT and cloud computing that can be
supported by ISDN.

Considering this, Table 8 shows findings that underscore key research voids within the
intersection of SDN and AI, necessitating attention in forthcoming investigations. These
voids delineate domains and facets that remain incompletely examined or comprehended
within the scientific discourse. Addressing these lacunae promises enhancements in the
methodologies and strategies deployed, as well as a deeper comprehension of AI’s relevance
and efficacy within SDNs. Furthermore, bridging these gaps will facilitate the creation of
more refined and sophisticated models, thereby making substantial contributions to the
realm of AI as applied to SDNs.

Table 8. Research Gaps in SDN and AI.

Category Justification Gap Questions for Future Researchers

Thematic Gaps Unresolved issues in
specific areas of SDN

Lack of AI algorithms for network
data processing and integration
with SDN

How can existing AI algorithms be
adapted to address the specific
challenges of SDN?

Absence of communication
models between domains in SDN

What inter-domain communication
approaches could be more effective in
an SDN environment?

Need for scalability schemes for
SDN

How can RL schemes improve the
scalability of SDN networks?

Lack of effective security
prediction methods for SDN

How can ML models enhance threat
detection and mitigation in SDN?

Geographic Gaps
Limitations in the

application of SDN in
different contexts

Lack of SDN implementation in
specific environments such as 5G,
NFV, IoT, edge computing, ICN,
and wireless networks

How can SDN principles be
effectively and efficiently adapted to
different network contexts?
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Table 8. Cont.

Category Justification Gap Questions for Future Researchers

Interdisciplinary Gaps
Need to integrate

different disciplines and
technologies

Requirement for AI integration
with SDN

What are the best approaches to
integrating AI into the management
and operation of SDN networks?

Lack of collaboration between
disciplines such as computer
science, networking, and
cybersecurity in the context of
SDN

How can researchers from different
disciplines collaborate to address the
interdisciplinary challenges of SDN?

Time Gaps
Future challenges that

have not yet been
addressed

Need for high-quality datasets for
training

How can researchers improve the
availability and quality of network
datasets for research?

Lack of mature models for
inter-domain communication

What approaches can be developed to
improve inter-domain
communication in SDN?

Lack of effective security
prediction methods for SDN

What are the most promising
approaches for predicting and
mitigating security threats in SDN?

Source: Self-elaboration based on the results obtained in the literature review.

Figure 2 shows a detailed analysis of annual publication trends, indicating a signif-
icant increase in research activity since 2018, with notable peaks in 2019 and 2021. This
upward trend reflects the growing interest and rapid advances in integrating AI with SDN
technologies. Key contributions in 2019, such as a highly cited review article that repre-
sents the synergy between machine learning algorithms and SDN concepts, exemplify the
foundational work driving this field forward. Similarly, the 2021 perspective on smart city
applications and vehicular intelligence systems underscores the innovative and practical
applications of AI-enhanced SDN.

By comparison, the research in [12] focuses on load balancing in SDN using AI, analyz-
ing SDN architecture, and categorizing AI-based methods for load balancing. On the other
hand, this research provides a broad focus on practical applications such as smart cities and
vehicular systems, while [12] offers a detailed assessment of load balancing mechanisms,
highlighting challenges and future trends, with a specific focus on network efficiency and
resource usage. Both studies underline the importance of AI improving SDN performance,
although ours provides a broader view of practical and emerging applications.

Otherwise, this research emphasizes the integration of AI in network management
and its innovative applications in various sectors. In contrast, the research on the era of
generative AI in 6G wireless intelligence addresses the challenges and developments in
next-generation wireless networks, highlighting the role of generative AI in improving 6G
network intelligence [59]. Also, it is important to emphasize that this research focuses on the
synergy between AI and SDN, including applications in smart cities and vehicular systems.
The research in 6G explores new fronts of wireless intelligence, covering the evolution of
infrastructure and the development of advanced algorithms for 6G networks. Finally, the
research in [33] focuses on the problem of controller placement during SDN deployment in
telecommunication internet service provider networks, analyzing strategies to optimize
controller placement to improve network performance and efficiency. Contrasting with the
obtained results of this research, the integration of AI to improve network management
and practical applications is highlighted.

Thus, it becomes evident that the integration of AI with SDN not only enhances
network management capabilities but also paves the way for innovative applications across
various sectors. However, the exploration of AI-driven SDN is still in its early stages,
particularly in the context of emerging technologies such as 6G wireless intelligence. As
this field continues to evolve, challenges of scalability, security, and real-time optimization
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remain paramount. Future research should aim to bridge these gaps by developing robust
AI models tailored to the dynamic and complex nature of SDN environments, unlocking
the full potential of intelligent network management systems.

Finally, and from the research results, several promising directions for future investiga-
tions in the field of AI-integrated SDN can be outlined. First, the scalability and efficiency
of AI algorithms in SDN environments need to be further explored, especially in large-scale
contexts such as telecommunication networks and data centers. Secondly, future research
could focus on developing AI models that optimize routing and load balancing in real-time,
dynamically adapting to changing network traffic conditions. Furthermore, given the
growing interest in 6G wireless intelligence, the integration of generative AI to improve
wireless network security and management represents another crucial area of research.
It is also essential to investigate the interoperability and integration of SDN with other
emerging technologies, such as edge computing and virtualized function networks, in
order to create more robust and efficient systems. Finally, developing high-quality data sets
and creating advanced predictive models for threat detection and cyberattack mitigation in
SDN networks are critical areas that require attention to ensure the security and resilience
of future network infrastructures.

5. Conclusions

This article conducts a comprehensive analysis and investigation of the application of
AI technology to SDN. First, the backgrounds of AI technology and SDNs are analyzed,
detailing and hierarchically describing the current state of research in both technologies.
Related research on the application of AI to the data plane, control plane, and application
plane of SDN is then explored. From the perspective of background and standardization
of applications, current AI applications in SDN, intelligent routing optimization methods,
intelligent network security methods, and AI-based methods are analyzed in detail. Related
research on traffic engineering is reviewed, comparing the advantages and disadvantages
of existing methods in the aforementioned research fields and providing the AI-based SDN
standardization definition from the currently most authoritative international standardiza-
tion organization.

The analysis of the correlation between key terms reveals the interconnection of con-
cepts such as AI, SDN, network security, and resource management, suggesting increasing
integration of these technologies to address complex issues in communications. In terms
of the relevance and development of key terms, some terms, such as denial of service
attacks, support vector machines, and distributed denial of service, are highly developed
and relevant today, indicating significant attention in these areas. Conversely, emerging
terms like AI-supported SDN and network security show growing relevance, suggesting
promising and evolving research areas within the field.

Regarding traffic classification, there is a trend towards the use of AI methods due to
their ability to adapt to traffic changes more effectively than traditional methods. However,
the challenge remains to develop AI algorithms that can handle the increasing temporal
and spatial complexity of network traffic. Route optimization is another critical aspect of
SDN network design, aiming to find optimal routing solutions in real time. While heuristic
methods have been widely used in the past, the potential of AI algorithms to provide more
stable and efficient solutions is recognized, especially in dynamic and complex network
environments. Finally, network security emerges as a central concern, where the application
of AI techniques for threat detection and prevention can enhance network resilience and
robustness. However, challenges related to timeliness and data reuse need to be addressed,
along with the continuous evolution of attack strategies.

The evolution of artificial intelligence (AI), from its emergence in the 1950s to the
present, reveals three distinct waves. Initially, AI focused on solving specific problems
with heuristic rules, showing limitations in scalability and adaptability. The second wave,
starting in the 1980s, was characterized by supervised, unsupervised, and semi-supervised
learning, allowing systems to extract rules and patterns from observational data. These
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technologies, such as natural language processing and computer vision, became AI pillars.
The third wave, marked by deep learning, has enabled significant advances in AI, especially
in voice and image recognition, solving more complex problems.

In the context of software-defined networks (SDNs), AI integration has opened new
possibilities for improving efficiency and security. In the data plane, research focuses on
designing switches and forwarding rules for faster and more scalable data flow processing.
In the control plane, AI application centers on optimizing routing algorithms and enhancing
security through historical data-based attack detection and prevention. Lastly, in the
application plane, AI is used to predict and manage traffic more efficiently, improving SDN
network performance and flexibility. Concepts like the P4 programming language and
combining AI and telemetry are also being explored to enhance SDN network management
and performance. Additionally, key methods and technologies have been identified, such
as intelligent route optimization, reinforcement learning-based routing strategies, and
AI-based intrusion detection. The importance of AI-based traffic engineering for improving
SDN network performance is also highlighted. However, challenges such as adaptation to
specific application requirements, network security, and accurate traffic prediction need to
be addressed.

Possible challenges identified include data quality, inter-domain communication,
scalability, and security prediction. There is a need to adapt existing AI algorithms to
specifically address SDN issues and to develop solutions tailored to different network
contexts, such as 5G, network function virtualization, IoT, edge computing, information
center networks, and wireless networks. Identified research gaps highlight the need
for continued investigation and development of new solutions to enhance SDN and AI
integration and address emerging challenges in the field of communication networks.

Regarding potential research limitations, despite the extensive coverage provided in
the systematic literature review on the intersection of SDN and AI, possible publication
bias, variability in the methodological quality of included studies, limited generalization of
results, and lack of depth in certain research areas must be considered, potentially influenc-
ing the overall understanding of the current state of these technologies. As potential future
research directions, fostering greater interdisciplinary collaboration among researchers
from different fields, establishing standards and best practices, evaluating the impact in
real network environments, developing specific tools and frameworks, and addressing
ethical and security considerations are essential. This will enable more effective and ethical
implementation of these technologies in the communications industry. An agenda that
prioritizes the use of AI techniques, the development of application programs, and the
continuous exploration of SDN is proposed to maintain the relevance and effectiveness of
these technologies in the future.

Finally, this study presents some advantages of AI-based SDN in high-quality data, as
well as the challenges they face in domain communication, scalability, and network security
prediction. Based on this, AI-based SDN and emerging fields such as 5G, network function
virtualization, IoT, edge computing, information center networks, and the development
trend of integration in the wireless networks field are discussed. It is hoped that through
the discussion and exploration in this article, a new path for research in the development
of AI-based SDN will be opened, leading to the realization of smarter networks. However,
it is important to note that challenges persist that need to be addressed to fully lever-
age the potential of this emerging technology. This includes developing more advanced
AI algorithms, improving interoperability between different network components, and
continuously adapting to changing network demands and threats.
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