Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/131971
Título: Recent advancements in deep learning-based remote photoplethysmography methods
Autores/as: Gupta, Ankit
Ravelo-García, Antonio G. 
Morgado-Dias, Fernando
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Blood Volume Pulse
Deep Learning
Noncontact Approaches
Physiological Parameters
Remote Photplethysmography Signal
Fecha de publicación: 2024
Publicación seriada: Data Fusion Techniques And Applications For Smart Healthcare
Resumen: Health monitoring of an individual is guided by physiological parameters that can be estimated by a photoplethysmography signal using contact-based or contactless approaches. Contactless monitoring, being more advantageous than the contact-based approach, is an active area of research. Additionally, conventional contactless approaches are based on certain assumptions, which are not required for deep learning methods. Therefore, this chapter reviews the deep learning-based remote photoplethysmography signal extraction methods, making the following contributions: first, it presents various compressed and uncompressed datasets used in this domain; second, it summarizes and analyzes the region of interest selection methods, followed by remote photoplethysmography signal extraction methods based on the deep learning architecture baselines; finally, the limitations of the existing methods are highlighted with recommendations for future studies.
URI: http://hdl.handle.net/10553/131971
DOI: 10.1016/B978-0-44-313233-9.00012-6
Fuente: Data Fusion Techniques and Applications for Smart Healthcare[EISSN ], p. 127-155, (Enero 2024)
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.