Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/131971
Campo DC Valoridioma
dc.contributor.authorGupta, Ankiten_US
dc.contributor.authorRavelo-García, Antonio G.en_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.date.accessioned2024-07-01T08:31:26Z-
dc.date.available2024-07-01T08:31:26Z-
dc.date.issued2024en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/131971-
dc.description.abstractHealth monitoring of an individual is guided by physiological parameters that can be estimated by a photoplethysmography signal using contact-based or contactless approaches. Contactless monitoring, being more advantageous than the contact-based approach, is an active area of research. Additionally, conventional contactless approaches are based on certain assumptions, which are not required for deep learning methods. Therefore, this chapter reviews the deep learning-based remote photoplethysmography signal extraction methods, making the following contributions: first, it presents various compressed and uncompressed datasets used in this domain; second, it summarizes and analyzes the region of interest selection methods, followed by remote photoplethysmography signal extraction methods based on the deep learning architecture baselines; finally, the limitations of the existing methods are highlighted with recommendations for future studies.en_US
dc.languageengen_US
dc.relation.ispartofData Fusion Techniques And Applications For Smart Healthcare-
dc.sourceData Fusion Techniques and Applications for Smart Healthcare[EISSN ], p. 127-155, (Enero 2024)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherBlood Volume Pulseen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherNoncontact Approachesen_US
dc.subject.otherPhysiological Parametersen_US
dc.subject.otherRemote Photplethysmography Signalen_US
dc.titleRecent advancements in deep learning-based remote photoplethysmography methodsen_US
dc.identifier.doi10.1016/B978-0-44-313233-9.00012-6en_US
dc.identifier.scopus85192888579-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57050762000-
dc.contributor.authorscopusid9634135600-
dc.contributor.authorscopusid7102398975-
dc.description.lastpage155en_US
dc.description.firstpage127en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2024en_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

1
actualizado el 30-mar-2025

Visitas

45
actualizado el 25-ene-2025

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.