Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/130745
Título: | Estimation of pile stiffness in non-homogeneous soils through Artificial Neural Networks | Autores/as: | Quevedo Reina, Román Álamo Meneses, Guillermo Manuel Aznárez González, Juan José |
Clasificación UNESCO: | 330532 Ingeniería de estructuras 330533 Resistencia de estructuras |
Palabras clave: | Laterally Loaded Piles Impedance Functions Pile Foundation Soil-Structure Interaction Non-Homogeneous Soils, et al. |
Fecha de publicación: | 2024 | Publicación seriada: | Engineering Structures | Resumen: | Many international standards highlight the relevance of studying the compatibility of forces and displacements between the structure and the foundation that supports it. In the case of pile foundations, some authors use continuum models that rigorously reproduce the interaction of the pile with the surrounding soil. However, their high computational cost justifies the use of simplified methodologies that allow obtaining sufficiently accurate results in significantly less time. This work presents a surrogate model based on Artificial Neural Networks (ANNs) trained from a synthetic dataset generated by a continuum numerical model. A good regression capacity is observed by the proposed model, also requiring very short evaluation times. Two use examples are presented to illustrate the smooth behaviour of the ANNs model and its ability to determine the critical pile length. This surrogate model allows introducing soil-structure interaction in problems with large volume of evaluations in a feasible way without significantly compromising the confidence of the results. | URI: | http://hdl.handle.net/10553/130745 | ISSN: | 0141-0296 | DOI: | 10.1016/j.engstruct.2024.117999 | Fuente: | Engineering Structures [ISSN 0141-0296], v. 308, (Junio 2024) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.