Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130745
Título: Estimation of pile stiffness in non-homogeneous soils through Artificial Neural Networks
Autores/as: Quevedo Reina, Román 
Álamo Meneses, Guillermo Manuel 
Aznárez González, Juan José 
Clasificación UNESCO: 330532 Ingeniería de estructuras
330533 Resistencia de estructuras
Palabras clave: Laterally Loaded Piles
Impedance Functions
Pile Foundation
Soil-Structure Interaction
Non-Homogeneous Soils, et al.
Fecha de publicación: 2024
Publicación seriada: Engineering Structures 
Resumen: Many international standards highlight the relevance of studying the compatibility of forces and displacements between the structure and the foundation that supports it. In the case of pile foundations, some authors use continuum models that rigorously reproduce the interaction of the pile with the surrounding soil. However, their high computational cost justifies the use of simplified methodologies that allow obtaining sufficiently accurate results in significantly less time. This work presents a surrogate model based on Artificial Neural Networks (ANNs) trained from a synthetic dataset generated by a continuum numerical model. A good regression capacity is observed by the proposed model, also requiring very short evaluation times. Two use examples are presented to illustrate the smooth behaviour of the ANNs model and its ability to determine the critical pile length. This surrogate model allows introducing soil-structure interaction in problems with large volume of evaluations in a feasible way without significantly compromising the confidence of the results.
URI: http://hdl.handle.net/10553/130745
ISSN: 0141-0296
DOI: 10.1016/j.engstruct.2024.117999
Fuente: Engineering Structures [ISSN 0141-0296], v. 308, (Junio 2024)
Colección:Artículos
Unknown (1,78 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.