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A B S T R A C T

Many international standards highlight the relevance of studying the compatibility of forces and displacements
between the structure and the foundation that supports it. In the case of pile foundations, some authors use
continuum models that rigorously reproduce the interaction of the pile with the surrounding soil. However,
their high computational cost justifies the use of simplified methodologies that allow obtaining sufficiently
accurate results in significantly less time. This work presents a surrogate model based on Artificial Neural
Networks (ANNs) trained from a synthetic dataset generated by a continuum numerical model. A good
regression capacity is observed by the proposed model, also requiring very short evaluation times. Two use
examples are presented to illustrate the smooth behaviour of the ANNs model and its ability to determine the
critical pile length. This surrogate model allows introducing soil–structure interaction in problems with large
volume of evaluations in a feasible way without significantly compromising the confidence of the results.
. Introduction

Knowing the foundation behaviour and the effects that it can induce
n the structure is a fundamental task for a correct structural analysis.
or this reason, many standards highlight the relevance of determining
he deformations produced in the foundation, as well as the compati-
ility with the forces and movements of the structure it supports (see,
.g., [1–3]).

Without being exhaustive, there are two well-known methodologies
n the literature that allow obtaining the stiffness of pile foundations.
odels based on Winkler-type methodologies are the most popular,
here the soil–pile interaction is treated as a set of independent dis-

ributed springs for which there are proposals for their stiffness value
o obtain accurate solutions to many problems. These models can have
simple mathematical formulation that allows access to numerical or

nalytical solutions that are very useful in the early stages of design.
he American Petroleum Institute (API) proposes using this model [2],
hich allows introducing non-linearities in the springs that modify

oil response depending on the lateral displacement of the pile at
ifferent depths (‘‘p-y’’ formulations). Another approach is directly
sing numerical models that allow studying the continuum problem
ncluding the pile foundation and the soil. This methodology, mainly
ased on the Finite Element Method or the Boundary Element Method,
igorously considers the interaction of the pile with the surrounding
oil with greater naturalness and precision depending on the method
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E-mail address: juanjose.aznarez@ulpgc.es (J.J. Aznárez).

employed. In this way, the three-dimensional nature of this interaction
is taken into account where the soil is considered as an infinite medium
constituted by layers with different properties that extends beyond the
pile in all directions. An actualized review of this topic can be consulted
in [4]. Also, with some of these methodologies, several authors have
proposed explicit expressions of the stiffness for a pile foundation (see,
e.g., [5–12]). These formulas allow a very fast and simple evaluation,
although they have been obtained for specific soil profiles and therefore
do not allow to collect more complex behaviours of the soil–structure
interaction.

In contrast to these numerical models, the use of Machine Learning
(ML) techniques with the aim of developing general surrogate models
(meta-modelling) can be a simple, accessible and useful option to cap-
ture the complex phenomena involved in this problem. The interest in
these tools has increased within the field of civil engineering in recent
years [13,14]. More specifically, the application of different artificial
intelligence (AI) techniques in geotechnical engineering has achieved
satisfactory results for many problems of interest [15]. This review also
highlights Artificial Neural Networks (ANNs) as the predominant tool
among all those analysed. In this sense, a recent review that is much
more focused on the application of ANN tools in this type of problems
can be found in Moayedi et al. [16]. Furthermore, Shanin [17] and
Fatehnia et al. [18] provide some interesting and extensive reviews
vailable online 16 April 2024
141-0296/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
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Fig. 1. Conceptual diagram of the fully connected neural network using in this work, highlighting the input layer, the hidden layers and the output layer. Input and output
variables included are properly defined in Section 3.
on the implementation of AI techniques, including ANN, in pile foun-
dation design and analysis. The application of such techniques in
the development of surrogate models to evaluate the stiffness of pile
foundations is a necessary and undeveloped task. To the best of the
authors’ knowledge, only a study of Franza et al. [19] has been found,
where an ANN has been trained to evaluate the impedance functions
of 2x2 inclined pile groups in homogeneous soils. At the present time
these metamodels can be formulated with guarantees, accuracy, and
generality and are a very interesting alternative to incorporate with
economy and simplicity the soil–structure interaction effects in other
structural models.

Thus, the aim of this article is to develop a Artificial Neural Network
based model (ANN-based model) capable of reproducing the equivalent
linear stiffness of a pile foundation in non-homogeneous soil according
to a continuum model. This is an initial approach to the implementation
of Machine Learning techniques to the study of the compatibility
of forces and movements between these deep foundations and the
structure they support.

2. Methodology

2.1. ANN-based model

The ANN-based model capable of estimating the stiffness of the pile
is built through a supervised learning process, that requires a dataset
with example cases from which the neural network can learn. Due to
the difficulty of obtaining a sufficiently large volume of experimental
data, a synthetic dataset is built from an available numerical model (see
Section 2.2). For the generation of this dataset, the limits of the search
space of the input variables must be defined. Next, using uniformly
distributed random numbers, random cases are generated between the
established limits, obtaining the input variables of the dataset. Finally,
the continuum model, which is intended to be replaced by the neural
network, is used to evaluate the dataset inputs and thus obtain the
outputs.

Since the problem to solve corresponds to a regression problem
with unstructured data (there is no spatial or sequential structure), it
is proposed to use fully connected networks (represented in Fig. 1). In
this case, the number of parameters that the network will present, as
well as its capacity to fit the data, will closely depend on the number
of hidden layers and the number of neurons per layer. For this work,
different architectures will be analysed by modifying the number of
hidden layers and neurons per layer. To reduce architecture variability,
all hidden layers are assumed to have the same number of neurons.
In addition, at the output of each hidden layer, a normalization of the
layer is performed to speed up its training [20] and the Rectified Linear
Unit (ReLU(𝑥) = max (0, 𝑥)) is used as activation function.

To reduce the differences in scale of the different input and output
variables, they are normalized by subtracting the mean and dividing by
the standard deviation. Next, the dataset is randomly divided into two
2

parts: a training dataset (80%) by which the error is minimized, and a
validation dataset (20%) to stop the training and avoid overfitting.

The training of the neural network is carried out using the automatic
differentiation algorithm already implemented in Matlab [21], and
setting the mean squared error (MSE = 1

𝑛
∑𝑛

𝑖=1(𝑌 − 𝑌 )2) of the outputs
as the loss function. For updating the parameters, the adaptive moment
estimation [22] is used with an initial global learning rate of 0.01,
a gradient decay factor of 0.9, a squared gradient decay factor of
0.999 and a batch size of 5000. The error of the validation data is
continuously evaluated, stopping the training when it stabilizes. Next,
the neural network is retrained, reducing the global learning rate by
half, repeating this process until the new network does not improve
the results of the previous one.

Finally, once the training and evaluation of the ANNs have been
carried out, it is proposed to combine the predictions of independent
networks to build an ensemble model (see, e.g., [23]). In this way, the
output of the ensemble model would be defined as the mean of the
predictions of the individual networks, so large local errors of some
networks can be reduced by the agreement of others. In addition, a
measure of prediction uncertainty can be obtained by evaluating the
standard deviation of the individual ANNs outputs.

2.2. Continuum model for computing the pile stiffness

The dataset is an essential element for the supervised learning pro-
cess. In this work, a synthetic dataset is generated using an previously
developed rigorous continuum numerical model [24] that has been ver-
ified and successfully employed in the analysis of several soil–structure
interaction problems (see, e.g., [25,26]). This model is based on the in-
tegral expression of the reciprocity theorem in elastodynamics and the
use of advanced fundamental solutions for reproducing the behaviour
of the layered soil. These fundamental solutions already satisfy the free-
field and inter-layer boundary conditions, which avoid any meshing
of the soil surfaces. On the other hand, piles are treated as load lines
in the soil formulation and their stiffness and inertial contribution are
considered through their definition as finite elements beams. Pile-soil
coupling is made by imposing compatibility and equilibrium conditions
in terms of displacements and soil–pile interaction forces, respectively.
Linear-elastic behaviour of soil and piles is considered. Despite it is
a model generally oriented to the analysis of dynamic problems in
the frequency domain, it is implemented in such a way that it can
reproduce the corresponding static problem assuming sufficiently low
frequency. In this study, results are obtained considering a wavelength
of the shear wave of the soil at reference depth 100 times greater
than the pile diameter. These assumptions result in a very efficient but
accurate model.

The numerical model used is formulated for layered soils. In order
to reproduce a continuous variability of soil properties, the soil profile
is discretized into enough layers of constant properties, achieving an
equivalent global behaviour.
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Fig. 2. Problem statement. Single hollow pile embedded in non-homogenous halfspace.

As aforementioned, this numerical model presents some simplifi-
cations. Linear elastic behaviour is considered both for pile and soil;
and the contact between them is assumed to be perfectly welded.
The pile is treated as a beam element, reducing its dimension to its
axis and, therefore, not affecting the soil continuity. However, the
authors [25] have demonstrated its applicability, even for significantly
non-slender foundations, through a comparison against a soil-shell
interaction model.

3. Problem statement

This work aims to characterize the static stiffness of pile foundations
in non-homogeneous soils, such as the one represented in Fig. 2. The
pile is considered as a tubular element embedded in a vertical position.
The geometric variables that define it are the embedded length (𝐿𝑝), the
diameter (𝐷𝑝) and the thickness (𝑡𝑝). For the static analysis, the material
characteristics are reduced to Young’s modulus (𝐸𝑝) and Poisson’s
ratio (𝜈𝑝). The soil is considered as a non-homogeneous vertical half-
space with mechanical properties defined by a shear wave velocity that
increases continuously with depth following a generalized power law
function [27]. As this work focuses on the static stiffness of foundations,
this power law is rewritten in terms of Young’s modulus as:

𝐸𝑠(𝑧) = 𝐸𝐿
𝑠

(

𝑏 + (1 − 𝑏) 𝑧
𝐿𝑝

)2𝑛𝑠
with 𝑏 =

(

𝐸0
𝑠

𝐸𝐿
𝑠

)
1

2𝑛𝑠
(1)

where 𝐿𝑝 is the pile length (used as reference depth), 𝐸0
𝑠 and 𝐸𝐿

𝑠 are
the Young’s modulus at the free surface and at the reference depth,
respectively, and 𝑛𝑠 is a dimensionless parameter that determine the
Young’s modulus profile between the free surface and the reference
depth.

The stiffness of the pile is associated with three degrees of freedom:
lateral displacement (𝑢), rotation (𝜃) and vertical displacement (𝑣) of
the head (Fig. 2). Due to the radial symmetry that the problem presents,
it is redundant to determine what happens to the lateral displacement
and the rotation in the perpendicular plane. In this way, the pile
stiffness matrix presents the following structure:
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(2)

where 𝐾ℎℎ is the horizontal stiffness (lateral force on pile head due to
an unitary lateral displacement), 𝐾𝑟𝑟 is the rocking stiffness (bending
moment on pile head due to an unitary rotation), 𝐾ℎ𝑟 is the horizontal-
rocking coupling stiffness (bending moment on pile head due to an
3

Table 1
Limits established for the dimensionless variables that
define the problem.

Variable Lower limit Upper limit

𝐿𝑟 0 100
𝛿 0 1
𝐸𝑟 10 5 ⋅ 104

𝜈𝑝 0.15 0.35
𝜈𝑠 0.15 0.5
𝑛𝑠 0 1
𝛾𝑠 0 1

unitary lateral displacement and lateral force on pile head due to an
unitary rotation), and 𝐾𝑣 is the vertical stiffness (vertical force due to
an unitary vertical displacement).

Once the system has been defined, applying Buckingham’s theo-
rem [28], the problem is dimensionless treated in order to reduce the
number of variables. The dimensionless variables used to define the
system under study are:

𝐿𝑟 =
𝐿𝑝

𝐷𝑝
𝐸𝑟 =

𝐸𝑝

𝐸𝐿
𝑠

(

1 − 𝛿4
)

𝜈𝑠 𝛾𝑠 =

√

𝐸0
𝑠

𝐸𝐿
𝑠

𝛿 = 1 −
2 𝑡𝑝
𝐷𝑝

𝜈𝑝 𝑛𝑠

(3)

while the dimensionless stiffness are:

𝐾̂ℎℎ =
𝐾ℎℎ

𝐸𝐿
𝑠 𝐷𝑝

𝐾̂ℎ𝑟 =
𝐾ℎ𝑟

𝐸𝐿
𝑠 𝐷2

𝑝

𝐾̂𝑟𝑟 =
𝐾𝑟𝑟

𝐸𝐿
𝑠 𝐷3

𝑝
𝐾̂𝑣 =

𝐾𝑣

𝐸𝐿
𝑠 𝐷𝑝

(4)

To focus the study within a coherent scenario according to the
possible systems, a series of lower and upper limits are established
for each of the dimensionless variables that define the problem. These
limits are shown in Table 1.

Note that the reliability of the surrogate model predictions is limited
to those regions within the search space, decreasing closer to the
boundaries. However, a large number of scenarios is covered by this
search space. The considered soil profile is a halfspace with a general
power-law stiffness variability trough depth. The 𝑛𝑠 and 𝛾𝑠 parameters
allow reproducing different variations of the properties with depth,
including the homogeneous halfspace as a particular case. Regarding to
the pile geometry, from solid to thin-walled hollow piles are including,
with very wide slenderness ratios. The Young’s modulus of the soil can
range from 4.2 MPa, if a solid steel pile is assumed (𝐸𝑝 = 210GPa), up
to 2.7 GPa if the pile is made of concrete (𝐸𝑝 = 27GPa). With respect to
the Poisson’s ratio, in the case of the pile the search space includes the
characteristic values of concrete (𝜈𝑝 = 0.2) and steel (𝜈𝑝 = 0.3), while
for the soil it is extended to include saturated soils (𝜈𝑠 ≈ 0.5).

4. Results

4.1. Architecture selection

As indicated in Section 2.1, in order to generate the ANNs based
model, a dataset for training the model is needed (which will be divided
into the training dataset and the validation dataset), which in this
case has 200,000 cases. In addition, for the required evaluation of
the models, a test dataset of 150,000 cases is also generated. In a
balance between computational cost and performance, a small study
is performed to achieve sufficient predictive capacity in the resulting
model while avoiding training an excessive number of oversized ANNs.
To analyse the architecture relevance, 20 different architectures are
defined. The number of hidden layers and the neurons per hidden layer
is randomly selected within the intervals from 2 to 5 and from 50 to
200, respectively. Table 2 shows the number of hidden layers and the
number of neurons per hidden layer of the generated architectures.
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Table 2
Definition of architectures used.

Id. 1 2 3 4 5 6 7 8 9 10

No. of hidden layers 2 2 2 2 3 4 3 2 3 3
No. of neurons per hidden layer 50 65 70 80 60 50 70 110 90 100
No. of parameters 3354 5334 6094 7764 8404 8654 11,204 13,974 18,004 22,004

Id. 11 12 13 14 15 16 17 18 19 20
No. of hidden layers 3 5 5 2 4 2 3 3 4 5
No. of neurons per hidden layer 110 80 90 180 105 195 145 170 165 145
No. of parameters 26,404 27,684 34,744 35,464 35,494 41,344 44,954 61,204 85,474 87,874
Fig. 3. The 50th, 90th, 95th and 99th percentiles of the relative errors obtained by trained neural networks evaluated over test dataset.
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For each of the established architectures, 3 repetitions are performed
in order to reduce the statistical fluctuations due to the stochastic
processes associated with these models.

Once the training of the 60 neural networks described has been
completed, the aim is to compare their performance. To do this, the
test dataset is evaluated and the relative error in absolute value of the
prediction

(

𝑌
)

related to the value of the continuum numerical model
(𝑌 ) is obtained:

|

|

𝐸𝑟
|

|

(%) = 100 ⋅
|

|

|

|

|

𝑌 − 𝑌
𝑌

|

|

|

|

|

(5)

he 50th, 90th, 95th and 99th percentiles of error distributions are
elected as measures of the performance of the neural network. Fig. 3
hows the results for the different architectures used, where the dif-
erent markers represent the value of the 50th, 90th, 95th and 99th
ercentiles obtained for the ANNs trained. As expected, the error in
he predictions decrease while the number of parameters increases,
tabilizing over 40,000 parameters. Based on this trend, it is not
ecessary to increase the range of the architecture study. According to
he results, the architecture with 3 hidden layers and 145 neurons per
idden layers is established for the pretended model, being their results
urrounded by a dashed line in Fig. 3. Also, to help the comparison,
olid lines are used to mark the mean value among the three repetitions
f each percentile of the selected architecture.

.2. Performance of ANN model

After defining the architecture of the neural network that will be
sed in the proposed model, 17 networks of the same topology are ad-
itionally trained to obtain a total of 20 independent ANNs. In this way,
he prediction of each of them can be combined to obtain an ensemble
odel that consists of the mean value of each individual network. To

valuate the performance of the different networks and the ensemble
odel, the test dataset is evaluated and the relative error in absolute
4

alue of each measurement is obtained (Eq. (5)). Fig. 4 represents the
omplementary cumulative distribution function of the error of the four
tiffness terms of each one of the 20 networks individually evaluated
nd of the ensemble model built from them. It is observed that, from
statistical point of view, the ensemble model significantly improves

he performance of individual networks. In a more detailed comparison,
ndividual networks present an average error greater than 3.7% in the
orizontal stiffness for only 1% of the cases, while the ensemble model
resents an error greater than 2.4% for 1% of the cases. Similarly, this
eference error is reduced from 4.6% to 2.3% for horizontal-rocking
oupling stiffness, from 9% to 3.6% for the rocking stiffness and from
.2% to 2.5% for vertical stiffness.

Fig. 5 groups the complementary cumulative distribution function
f the error of the ensemble model for the four stiffness estimated in
rder to be easily compared. It should be noted that the errors do
ot present a homogeneous distribution among them, where horizontal
tiffness and rocking stiffness stand out. The former presents higher
elative errors for a large percentage of samples, while the deviations
t presents are smaller than for the other stiffness terms for the worst
redicted cases. On the other hand, for rocking stiffness, the opposite
ccurs. In any case, this fact does not affect the global performance of
he model, since only a 10% error in the prediction is exceeded in the
.3% of the rocking stiffness, the 0.13% of the cross stiffness and the
ertical stiffness, and the 0.07% of the horizontal stiffness. It should
e mentioned that there are some cases for which errors of up to 100%
re obtained, although with a very low prevalence (less than 0.013% in
he most frequent case). However, the difference in computation times
ustifies using this surrogate model: the average execution time of the
ontinuous model is around 61.25 s, while in the ensemble model it is
round 1.04⋅10−4 s, both executions performed parallelized in a 40-core
Intel® Xeon® Gold 6242R CPU @ 3.10 GHz), 93 GB RAM computer.

Other advantage of the ensemble model is that it provides a measure
of prediction uncertainty through the standard deviation of the results

given by each individual net. The relationship between the prediction
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Fig. 4. Complementary cumulative distribution function (CCDF) of the error in the predictions for the individuals ANNs and the ensemble model.
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Fig. 5. Complementary cumulative distribution function (CCDF) of the error in the
predictions for the ensemble model.

dispersion and the error of the surrogate model is analysed in Fig. 6.
This figure shows a heatmap of the number of observations of the
relative error, in absolute value, and the coefficient of variation ob-
tained from the ensemble model (|𝐶𝑉 |). The coefficient of variation is
defined as the absolute value of the standard deviation of the individual
predictions of each net divided by their mean value. A significant
relationship between the relative error and the coefficient of variation
is observed. The diagonal dashed line marks the points where both
metrics coincide. Furthermore, those cases whose error is considerable
larger than the model uncertainty (i.e., points above the diagonal
dashed line) correspond to small relative errors, not compromising the
reliability of the surrogate model. Note that the horizontal dotted line
marks the limit of a relative error equal to 1%.

4.3. Application examples

To show the ability of the proposed surrogate model to reproduce
the behaviour of single pile foundations in terms of its head stiffness,
two application examples are presented.

First, in Fig. 7, the results of the ensemble model are compared
5

with well-established fitted expressions [8–12] for the lateral, rocking
and cross-coupled stiffness of a flexible pile embedded in homogeneous
soils or soils with a linearly varying stiffness profile. These expressions,
which define the head stiffness as a function of the pile-soil relative
stiffness, can be consulted in the original works or in the recent review
made by Mylonakis and Crispin [4]. In all this works, the soil with
a linear variation of its Young’s modulus has zero stiffness at surface
level (𝛾𝑠 = 0, 𝑛𝑠 = 0.5). The results of the ensemble model are obtained
assuming 𝐿∕𝐷 = 50, 𝛿 = 1 (solid cross-section), 𝜈𝑝 = 0.25, and 𝜈𝑠 = 0.5
(as in [12]).

The comparison presented in Fig. 7 shows a nice agreement between
the results computed by the ensemble model and those obtained by
the different fitted expressions. Furthermore, the surrogate model is
capable to smoothly reproduce the influence of the pile-soil relative
stiffness on the three stiffness terms without noise or discontinuities.
Discrepancies between the ensemble model and formulas are higher for
the lateral stiffness, while for the rocking term almost all approaches
converge into the same values. The same level of good agreement is
found both for the homogeneous and non-homogeneous profiles.

For the second application example, the dimensional problem of
computing the pile head stiffness of a large-sized hollow monopile
is handled. These foundations are typically used as the supporting
structures for offshore wind turbines. The influence of both the pile
length and soil profile on the four pile stiffness terms is analysed. For
that purpose, three variable-with-depth soils (𝑛𝑠 = 0.2, 0.5 and 0.8) and
ne homogeneous soil (𝑛𝑠 = 0) are considered. All profiles presents
he same average stiffness over their first 30 m, 𝐸̄𝑠,30 = 30MPa, and

constant Poisson ratio 𝜈𝑠 = 0.49 (equivalent to a saturated soil).
or the non-homogeneous media, a zero stiffness at surface level is
ssumed (𝛾𝑠 = 0). The evolution with depth of the Youngs modulus
ith respect to the average value is presented for the studied profiles

n the right graphic area of Fig. 8. The pile geometry is defined by
he dimensional properties: 𝐷𝑝 = 5m, 𝑡𝑝 = 57mm (following API’s
ecommendation [2]), 𝐿𝑝 = 5–40m. Steel material properties are
ssumed for the pile: 𝐸𝑝 = 210GPa, 𝜈𝑝 = 0.25.

Fig. 8 presents the four pile head stiffness terms as functions of the
ile length. The results of the ensemble model for each soil profile are
hown by different line colours, while crosses are used to represent the
eference values obtained with the numerical model. A great agreement
s observed between the predictions made by the ensemble model and
he numerical model, even in this example where a significantly flexible
ile (close to the lower limit presented in Table 1) is considered. As
n the previous example, the pile stiffness computed by the surrogate
odel present a smooth behaviour with the variation of the pile length.
he convergence into a fixed stiffness when the pile active length is
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Fig. 6. Heatmap of the number of observations of the relative error and the coefficient of variation of the surrogate model.
Fig. 7. Pile head stiffness for the lateral behaviour of a single pile depending on the pile-soil relative stiffness. Comparison of the ensemble model against fitted expressions.
reached is clearly seen for the terms related to the lateral behaviour
(lateral, rocking and cross-swaying stiffness). Furthermore, the results
show that the active length increases as the soil profile becomes softer
near the free-surface, i.e, 𝑛𝑠 increases. This trend qualitative agrees with
the expressions presented in [29]. The expected relation between pile
stiffness and length is obtained: as the pile grows longer, it reaches
stiffer soils which leads to an increment of the foundation stiffness.
However, as the impact of deeper soil layers is not the same for
all terms [30,31], different behaviours are obtained. The horizontal
6

stiffness, which is mainly influenced by the superficial soil properties,
presents its maximum value for the homogeneous medium, and reduces
its values as the soil becomes softer. The same trend is observed in the
rocking and horizontal-rocking coupling terms for short piles. However,
when the pile is long enough, the additional resistance of the deeper
layers against the pile deflection reduce the difference of the rocking
and coupled stiffness with respect to the homogeneous profile. The
value of the active length for the rocking problem is larger than the
one corresponding to the lateral problem. The extreme scenario is found
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Fig. 8. Influence of pile length on the head stiffness for large diameter monopiles embedded in several soil profiles with the same average stiffness. Results comparing the ensemble
model and the continuum model.
for the vertical stiffness, which is affected by soil properties along the
whole pile. Thus, the vertical stiffness constantly increases with the pile
length. The ratio of this increment is proportional to the ratio of the
increment of the soil Young’s modulus with depth.

5. Conclusions

A surrogate model based on ANNs which allow to reproduce the
pile foundation stiffness is presented. The combined use of individuals
neural networks in an ensemble model allows to increase the prediction
capacity of it. The ensemble model reaches a high performance, obtain-
ing relative errors less than 10% for 99.7%, 99.87% and 99.93% of the
validation samples for the rocking stiffness, cross and vertical stiffness,
and lateral stiffness terms, respectively. This performance is achieved
with a significant reduction in the computational cost, allowing the
evaluation of a thousand cases in less than one second.

Two application examples are included to illustrate the performance
of the surrogate model with specific cases. First, the output of the model
is compared with limited-range expressions present in the bibliography,
showing a great agreement with them. In the second example, the
evolution of the pile stiffness as its length increases is studied, while
comparing the results of the surrogate model and the continuous model.
A great agreement is shown between both models. The stabilization of
the pile stiffness derived of reaching the active length is adequately
reproduced by the surrogate model, allowing to determine this criti-
cal aspect of the foundation. In both examples, the surrogate model
presents a smooth behaviour, which makes it a useful tool to propose
previous parametric studies or perform fast estimations in first stages
of studies that require the evaluation of a large volume of cases.

This work confirmed the capability of ANNs-based surrogate models
for predicting the static response of pile foundations. As future works,
different relevant phenomena, such as the dynamic response of the
system and pile-soil–pile interaction, could be incorporated.
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