Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129894
Título: Finite number of similarity classes in Longest Edge Bisection of nearly equilateral tetrahedra
Autores/as: Trujillo Pino, Agustín Rafael 
Suárez Rivero, José Pablo 
Padrón Medina, Miguel Ángel 
Clasificación UNESCO: 1204 Geometría
Palabras clave: Longest Edge Bisection
Meshes
Similarity classes
Tetrahedra
Fecha de publicación: 2024
Publicación seriada: Applied Mathematics and Computation 
Resumen: In 1983 Adler [1] pointed out that if a tetrahedron is nearly equilateral (edge lengths within 5% of each other) and the first and second longest edges are opposite, then the iterative Longest Edge Bisection (LEB) method produces ≤37 similarity classes. The importance of nearly equilateral tetrahedra is that they generate a finite number of similarity classes during the iterative LEB, a desirable property in Finite Element computations. We prove the conjecture given by Adler and improve the bound of 5% to 22.47%. A new algorithm is introduced for the computation of similarity classes in the iterative Longest Edge Bisection (SCLEB) of tetrahedra using a compact and efficient edge-based data structure.
URI: http://hdl.handle.net/10553/129894
ISSN: 0096-3003
DOI: 10.1016/j.amc.2024.128631
Fuente: Applied Mathematics and Computation [ISSN 0096-3003], v. 472, 128631, (Julio 2024)
Colección:Artículos
Adobe PDF (1,31 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.