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In 1983 Adler [1] pointed out that if a tetrahedron is nearly equilateral (edge lengths within 5%
of each other) and the first and second longest edges are opposite, then the iterative Longest Edge 
Bisection (LEB) method produces ≤ 37 similarity classes. The importance of nearly equilateral 
tetrahedra is that they generate a finite number of similarity classes during the iterative LEB, a 
desirable property in Finite Element computations.
We prove the conjecture given by Adler and improve the bound of 5% to 22.47%. A new algorithm 
is introduced for the computation of similarity classes in the iterative Longest Edge Bisection 
(SCLEB) of tetrahedra using a compact and efficient edge-based data structure.

1. Introduction

The LEB method began to be applied only to triangles in a series of works around three decades ago. First, Rosenberg and 
Stenger [11] proved that the method does not degenerate the smallest angle in 2D. Then Kearfott [5], Adler [1], and Stynes [18]
gave a bound and proof for the behavior of the triangle diameters (the length of the longest edge). From their proofs, they also 
deduced that the number of similarity classes of triangles generated is finite, although they give no bound.

Algorithms for bisection (not necessarily bisecting the longest edge) were developed in 3D by Bansch [3], Maubach [8], Liu 
Joe [6,7], and Arnold et al. [2]. The stability of these methods is proved for any targeted tetrahedral mesh. All are equivalent and 
affine invariant when applied iteratively to any element, generating at most 36 similarity classes [4].

The LEB method of tetrahedra has been studied by Plaza and Rivara [9,10], among others. Although it is known that different 
types of tetrahedra behave computationally “well” or “bad”, especially in meshes used in Finite Element computations, no systematic 
study is known [14,15]. Stability has not been proved yet for the LEB of tetrahedra.

A bisection method is stable if the tetrahedra generated in the iterative refinement does not degenerate. Degeneration can be 
prevented if the interior angles are always greater than zero.

A finite number of similarity classes is not only sufficient but also necessary for stability, [4]. In practical situations, the number 
of similarity classes should be finite and as small as possible. For example, there are data depending on the element’s similarity 
classes and refinement level only. This means that a small and bounded number of similarity classes would lead to fast executions of 
programs if data of this type are computed and stored only once.
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Fig. 1. Sextuple Representation of an arbitrary tetrahedron.

A problem that remains open is the question of whether the iterative LEB of tetrahedra produces a finite number of new shape 
classes or not. In 1983, Adler [1] conjectured that there exist certain classes of tetrahedra that produce up to 37 similarity classes 
when LEB is iterated. Adler did not provide any proof of his statement although he mentioned that the tetrahedra with this relevant 
property should hold: (1) to be nearly equilateral and (2) the longest edge and the second longest edge are opposite. Adler did not 
give any precise definition of “nearly equilateral” and indicated the complexity of describing it briefly. However, Adler pointed out 
that it is satisfied if all edge lengths are within 5% of each other. Since this contribution by Adler, no other work has studied the LEB 
of nearly equilateral tetrahedra. Experimental results and the algorithm presented in [13] show that, in practice, the Adler statement 
was correct, although no rigorous proof of his ideas is given.

Indeed, the LEB of a regular tetrahedron has been the focus of interest in some papers such as [12,16,17]. The complex nature 
of LEB of a regular tetrahedron is analyzed in [17] where it is claimed the difficulty of the theoretical analysis as the bifurcation 
branches grow exponentially if a random criterion is chosen for the bisection edge. In [16] a Branch-and-Bound algorithm is given to 
obtain the minimum number of classes, eight, of a regular tetrahedron where the critical point is how to select the longest edge to be 
bisected. They find the rule by computing the smallest sum of all angles with the neighbor edges, 𝐿𝐸𝐵𝛼. This way the bigger angles 
are split avoiding needle-shaped simplices. The selection rule 𝐿𝐸𝐵𝛼 is optimal for the algorithm, although evaluating the rule for 
every tetrahedron generated is computationally more complex than a rule just selecting the first longest edge for subdivision, [16].

In this paper, we study the family of nearly equilateral tetrahedra that Adler roughly described in [1].
Section 2 introduces an efficient edge-based data structure for tetrahedra class representation, and an algorithm for the com-

putation of similarity classes in the Longest Edge Bisection (SCLEB) of tetrahedra is proposed. In Section 3 we study the regular 
tetrahedron and verify that, using our proposed data structure, the iterated SCLEB produces only 8 similarity classes. Section 4
presents a precise definition of the concept of a nearly equilateral tetrahedron, and we study the conditions for the convergence 
into a finite number of similarity classes. In Section 5 we give a proof and rigorous result with tetrahedra shape classes that indeed 
shows that the iterated SCLEB applied to nearly equilateral tetrahedra introduces at most 37 similarity classes. Section 6 studies the 
particular case of the SCLEB of nearly equilateral tetrahedra with repeated edges, which converge in less than 37 similarity classes. 
Finally, in section 7 we improve the Adler bound of 5% for nearly equilateral tetrahedra, expanding up to 22.47%.

2. Tetrahedra representation for efficient LEB

Let us represent a tetrahedron as a sextuple with the square lengths of its 6 edges in a certain order as in [13], called here, 
sextuple representation of a tetrahedron. In this way, the position and orientation of a tetrahedron are not taken into account, and 
only its geometric shape is represented. The order of these 6 values is very important. The first position in the sextuple can be any of 
the six edges, let’s call 𝑎 (see Fig. 1). The second, 𝑏, is any edge connected to 𝑎. The third edge 𝑐 is the edge that closes the triangle 
Í𝑎𝑏𝑐. The fourth edge 𝑑 is the edge connected to 𝑎 and 𝑐. The fifth edge 𝑒 is the closing edge of the Í𝑎𝑑𝑒 triangle. The sixth edge 𝑓
is the last edge opposite to the initial edge 𝑎. Then an arbitrary tetrahedron can be represented by the sextuple (𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ), 
where the capital letters represent the square lengths of the edges 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 . It is also important to note that this representation 
guarantees that the pairs of opposite edges in the tetrahedron are always 𝐴-𝐹 , 𝐵-𝐷, and 𝐶 -𝐸, as seen in Fig. 1. As an example, the 
regular tetrahedron with all its edges of length 1 is given by the sextuple 𝑅 = (1, 1, 1, 1, 1, 1), and the trirectangular tetrahedron given 
by the coordinates (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) is represented by the sextuple (2, 2, 2, 1, 1, 1).

There are 24 different sextuples to represent the same tetrahedron: there are 6 possibilities depending on the edge chosen as the 
first value of the sextuple. For each of them, 4 different alternatives depending on which edge, neighbor of the first, is taken as the 
second value.

Definition 1. We call the normalized sextuple representation of a tetrahedron, as defined in [13], the sextuple that places the longest 
edge as the first value, and the neighboring edge with the longest length as the second value. In the case of repeated edges, we choose 
the sextuple that places the highest possible values in the first positions of the sextuple.

Remark 1. Note that following Definition 1, the normalized representation of a similarity class guarantees that 𝐴 ≥ 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 , 
2

and 𝐵 ≥ 𝐶, 𝐷, 𝐸.
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Fig. 2. The six steps to obtain the normalized sextuple representation for a tetrahedron (𝐴,𝐵,𝐶,𝐷,𝐸,𝐹 ).

Fig. 2 shows how the edges are picked up to set the normalized sextuple representation for a tetrahedron (𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ). The 
longest edge 𝐴 is always taken as the first value of the sextuple. Of the 4 edges connected to 𝐴, 𝐵 is the longest. 𝐶 closes the triangle 
Ï𝐴𝐵𝐶 . 𝐷 is the edge that connects to 𝐴 and 𝐶 . The edge closing the triangle Ï𝐴𝐷𝐸 is 𝐸. 𝐹 is the last edge, opposite to 𝐴.

A similarity class is a set of tetrahedra with the same geometric shape, regardless of their specific position, orientation, and scale. 
So any two tetrahedra in the same family are similar to each other after applying any affine transformation. The following definition 
relates this concept with our representation.

Definition 2. A similarity class is represented by 𝑘(𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ) in the normalized sextuple representation, for 𝑘 ∈ ℝ+ being a 
scale factor.

Without loss of generality, from now on we can omit the factor 𝑘 and use brackets to represent a similarity class, [𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ], 
and parenthesis to represent a single tetrahedron. In this manner, [𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ] = 𝑘(𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ), ∀𝑘 ∈ℝ+.

Definition 3. Given two tetrahedra, 𝑇1 and 𝑇2, both belong to the same similarity class if 𝑇1 = 𝑘𝑇2, being 𝑘 ∈ℝ+.

Remark 2. The normalized sextuple representation is a suitable data structure for representing similarity classes of tetrahedra. 
Moreover, the cost of comparing two tetrahedra classes 𝑇1 and 𝑇2 given by their sextuple representation implies only a sextuple 
comparison (𝑇1 = 𝑘𝑇2). This is considerably cheaper computationally than other methods involving vertex-based representation, as 
in [16,17] that use matrix computations as determinants, transpose, scaling, and translation in high-precision arithmetic.

Definition 4. The LEB of a tetrahedron 𝑇 = (𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ) is the subdivision of 𝑇 by its longest edge (𝐴) to produce two new 
tetrahedra 𝑇1 and 𝑇2 given by:

𝑇1 =
1
4
(𝐴, 4𝐵, 2𝐵 + 2𝐶 −𝐴, 2𝐸 + 2𝐷 −𝐴, 4𝐸, 4𝐹 ) (1)

𝑇2 =
1
4
(𝐴, 2𝐵 + 2𝐶 −𝐴, 4𝐶, 4𝐷, 2𝐸 + 2𝐷 −𝐴, 4𝐹 ) (2)

Remark 3. As in this paper, we are dealing with similarity classes of tetrahedra, the expression for the classes of 𝑇1 and 𝑇2 can 
be simplified by multiplying both Equations (1), (2) by 4. Thus, for example, the class 𝑅 = [1, 1, 1, 1, 1, 1] produces the new classes 
𝑇1 = [1, 4, 3, 3, 4, 4] and 𝑇2 = [1, 3, 4, 4, 3, 4].

To continue applying the LEB to the newly generated similarity classes, it is necessary to convert them to their normalized 
representation previously. This representation guarantees that the longest edge is always at the first position in the sextuple. For 
example, the two new classes 𝑇1 and 𝑇2 generated by the LEB of the regular 𝑅 are normalized as [4, 4, 4, 3, 3, 1], so it follows 
that both belong to the same similarity class. The process of subdividing tetrahedra by the Longest Edge Bisection that only obtains 
similarity classes of tetrahedra leads us to define a particular algorithm called here Similarity Classes Longest Edge Bisection (SCLEB):

Definition 5. The Similarity Classes Longest Edge Bisection (SCLEB) of a similarity class 𝑇 = [𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ] can be defined as the 
following two-step process:

1. Subdivision of T to get:

𝑇1 = [𝐴, 4𝐵, 2𝐵 + 2𝐶 −𝐴, 2𝐸 + 2𝐷 −𝐴, 4𝐸, 4𝐹 ] (3)

𝑇2 = [𝐴, 2𝐵 + 2𝐶 −𝐴, 4𝐶, 4𝐷, 2𝐸 + 2𝐷 −𝐴, 4𝐹 ] (4)

2. Normalize representation of T1 and T2.

Definition 5 allows us to roughly determine an algorithm for the iterative SCLEB. Given an input tetrahedron by its normalized 
sextuple representation, an output is generated with the list of all the similarity classes obtained through the application of the 
iterative SCLEB to all of the descendants of the input tetrahedron. The output is a list of normalized sextuples representing each one 
3

of the similarity classes obtained.
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Fig. 3. Graph of similarity classes generated in the iterative SCLEB of class 𝑅1 = [1,1,1,1,1,1].

Remark 4. The iterative SCLEB algorithm discards those similarity classes that already appeared. In the case that after several 
iterations no new classes appear, then the algorithm stops and returns a finite list of similarity classes. Furthermore, we say that the 
iterative SCLEB algorithm converges.

3. SCLEB of the regular tetrahedron

Adler in [1] mentioned that the LEB of certain classes of tetrahedra generate at most 37 similarity classes. He focused on tetrahedra 
that are nearly equilateral, this is, tetrahedra with a shape very close to the regular. This suggests first studying the SCLEB of a regular 
tetrahedron.

Lemma 1. The iterative SCLEB of the regular similarity class produces exactly 8 similarity classes.

Proof. Let 𝑅1 = [1, 1, 1, 1, 1, 1] be the similarity class of the regular tetrahedron. If we apply iteratively the SCLEB to 𝑅1 using the 
Equations (3), (4), a binary tree is constructed where each level in the tree is a level of SCLEB subdivision. We remark here that the 
SCLEB algorithm always selects the first edge in the sextuple as the subdivision edge.

In the first SCLEB subdivision, two child tetrahedra of the same class are generated, 𝑅2 = [4, 4, 4, 3, 3, 1]. In the second level, 
SCLEB of 𝑅2 produces two children of the same class, 𝑅3 = [4, 3, 1, 3, 1, 2]. Again, SCLEB of 𝑅3 produces two children of the same 
class, 𝑅4 = [3, 2, 1, 1, 1, 1]. At this point, we have obtained 4 different similarity classes.

Continuing this bisection process from the 𝑅4 class, two different classes are produced. One class is again 𝑅2 already appeared 
previously in level 2, and a new class, 𝑅5 = [8, 4, 4, 3, 3, 1], is appeared. It should be noted that at each SCLEB level, we only continue 
subdividing new classes generated, discarding classes that previously appeared. From 𝑅5, we iterate the SCLEB as before, and in 
the next levels of subdivision, we obtain classes 𝑅6 = [4, 3, 1, 2, 2, 1], 𝑅7 = [2, 1, 1, 1, 1, 1] and 𝑅8 = [2, 2, 2, 1, 1, 1], together with other 
classes already appeared before. This last class 𝑅8, marks an interesting point in the SCLEB, as no new classes appeared after it. This 
is, if we continue the SCLEB process from the 𝑅8 class, the classes obtained will have already appeared in previous levels (𝑅2 to 𝑅7). 
We then conclude that there are no more than 8 similarity classes in the iterative SCLEB of a regular tetrahedron. □

Fig. 3 shows the graph indicating the eight similarity classes generated as the iterative SCLEB method is being applied to the 
regular tetrahedron 𝑅1. Each node depicts a similarity class, and a directed edge represents the new classes produced in the bisection. 
In Fig. 4 we show the tetrahedra shapes representing the eight tetrahedra similarity classes.

Remark 5. In the SCLEB of the regular tetrahedron, 𝑅1, 𝑅2 and 𝑅8 have more than one longest edge, unlike the other 5 classes 𝑅3, 
𝑅4, 𝑅5, 𝑅6 and 𝑅7. In the case of 𝑅1, it does not matter by which longest edge we subdivide, since all six edges are equal. In the 
same way, in the case of 𝑅8 = [2, 2, 2, 1, 1, 1], the three longest edges of length 

√
2 form a face of the tetrahedron, and it does not 

matter by which edge we subdivide because it is also symmetric on all three sides.

Remark 6. Note that in the SCLEB normalization process, the first edge in the sextuple is always one of the longest edges. In the 
case of 𝑅2 = [4, 4, 4, 3, 3, 1], it holds that the opposite edge to the initial one in the sextuple is the one with the smallest length (given 
by 1, the last value of the sextuple). This last fact is essential because it defines in itself the rule to guarantee the convergence of the 
number of similarity classes. If we had subdivided any of the other two longest edges, opposite to the edges of length 

√
3, the newly 

generated classes would be completely different, and the subdivision process would not converge.

Following the same idea by Adler to focus on the family of nearly equilateral tetrahedra, we are interested in studying the 
conditions for which a nearly equilateral tetrahedron follows the same graph of Fig. 3. In the next section, we study the conditions 
4

for this family of tetrahedra.
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Fig. 4. Shapes representing the eight tetrahedra similarity classes that are generated in the SCLEB of the regular class 𝑅1 .

Fig. 5. Sequence of delta values starting from the regular tetrahedron class.

4. Revisiting the Adler family of nearly equilateral tetrahedra

In [1] Adler mentioned that a tetrahedron can be considered nearly equilateral if all its edge lengths are within 5% of each 
other, even though he advertised to be slightly complicated to describe briefly. It is interesting to note that to our knowledge, nearly 
equilateral tetrahedra have not been studied concerning the LEB since 1983. The first question to answer is whether the SCLEB of 
a tetrahedron whose geometric shape is very close to the regular 𝑅1 converges to a finite number of similarity classes or not. The 
answer is that it only happens with some tetrahedra, and therefore the concept of nearly equilaterality of a tetrahedron must be 
studied rigorously.

Definition 6. Let 𝛿(𝑇 ) be the ratio between the square of the longest edge and the square of the shortest edge in any tetrahedron T.

Let us note that 𝛿(𝑅1) = 1, and 𝛿(𝑇 ) > 1 for all tetrahedra 𝑇 different to 𝑅1. Fig. 5 shows tetrahedra and their respective 𝛿(𝑇 )
values.

It should be noted that as 𝛿 deviates further from 1, the tetrahedron becomes more irregular, and it means that the ratio between 
the lengths of the longest and shortest edges is increasing. The greater the value of 𝛿(𝑇 ) (greater than 1), the more irregular the 
tetrahedron becomes. Therefore, 𝛿(𝑇 ) provides a means to assess the extent to which a tetrahedron deviates from being a regular 
tetrahedron.

Definition 7. A similarity class 𝑇 can be said to be nearly equilateral, expressed as 𝑇 ≈ 𝑅1, if 𝛿(𝑇 ) ∈ [1, 𝛿𝑚𝑎𝑥], where 𝛿𝑚𝑎𝑥 is a 
predefined threshold. For convenience, we call 𝑅∗

1 to the set of nearly equilateral classes.

The threshold 𝛿𝑚𝑎𝑥 is a predefined value that demarcates the maximum allowable difference in edge lengths for a tetrahedron 
5

to be considered nearly equilateral. The choice of 𝛿𝑚𝑎𝑥 is crucial as it sets the strictness of the criteria. A tetrahedron with 𝛿 value 
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significantly less than 𝛿𝑚𝑎𝑥 would closely resemble a regular tetrahedron. A tetrahedron with 𝛿 approaching 𝛿𝑚𝑎𝑥 would be at the 
limit of being classified as “nearly equilateral”, with its edge lengths exhibiting the maximum permissible disparity under the defined 
criterion. In summary, the “nearly equilateral” designation quantifies how closely a tetrahedron approaches the uniform edge length 
characteristic of a regular tetrahedron, within the bounds set by 𝛿𝑚𝑎𝑥.

Let us note that the idea of nearly equilateral for Adler was based on the criterion that edge lengths are within 5% of each other. 
That means that the ratio between the lengths of the maximum and minimum edges is less than 1.05. Therefore, as 𝛿 represents the 
ratio between its square values, this is equivalent to saying that 𝛿(𝑇 ) ≤ 1.052 = 1.1025. Let us call this value 𝛿𝐴, the Adler nearly 
equilateral threshold. For example, the class [11, 10, 10, 10, 10, 10] with 𝛿(𝑇 ) = 1.1 < 𝛿𝐴 is nearly equilateral under the definition of 
Adler.

The value of 𝛿(𝑇 ) helps us to measure the equilaterality of a tetrahedron. To compare the geometric shape between two arbitrary 
tetrahedra, we need a new definition.

Definition 8. Let 𝑇 = [𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ] and 𝑄 = [𝐴𝑄, 𝐵𝑄, 𝐶𝑄, 𝐷𝑄, 𝐸𝑄, 𝐹𝑄] be two arbitrary classes. We define T./Q as:

𝑇 .∕𝑄 =
[
𝐴

𝐴𝑄

,
𝐵

𝐵𝑄

,
𝐶

𝐶𝑄

,
𝐷

𝐷𝑄

,
𝐸

𝐸𝑄

,
𝐹

𝐹𝑄

]
. (5)

Note that 𝛿(𝑇 .∕𝑄) gives a measure to compare the shapes of 𝑇 and 𝑄. Moreover, if 𝛿(𝑇 .∕𝑄) < 𝛿𝑚𝑎𝑥 then 𝑇 ≈𝑄 and we can say 
that 𝑇 ∈𝑄∗. For example, for 𝑇 = [42, 41, 40, 32, 31, 10] and 𝑅2 = [4, 4, 4, 3, 3, 1] and 𝛿𝑚𝑎𝑥 = 1.1 then 𝛿(𝑇 .∕𝑅2) = 1.066 < 𝛿𝑚𝑎𝑥. Then 
it follows that 𝑇 ∈𝑅∗

2 .
Not all tetrahedra in 𝑅∗

1 converge into a finite number of similarity classes. The convergence affects only those tetrahedra 
following the graph of Fig. 3 during the generation of the SCLEB. Let us see two examples:

Example 1. Let 𝑇 = [105, 103, 102, 101, 100, 104] be a class belonging to 𝑅∗
1 . This class converges after 7 iterations into 37 similarity 

classes. 𝑇 follows a subdivision pattern very similar to the regular 𝑅1 (see Fig. 3). The first step of the SCLEB for 𝑇 produces the classes 
𝑇1 = [416, 412, 400, 297, 305, 105] and 𝑇2 = [416, 408, 404, 297, 305, 105], both belonging to 𝑅∗

2 , since 𝛿(𝑇1.∕𝑅2) = 𝛿(𝑇2.∕𝑅2) = 1.06. 
Let us note that, in this step, there is a first difference with the regular case: two new different classes appear, both very similar 
to 𝑅2 = [4, 4, 4, 3, 3, 1], but not of the same similarity class. In the next step of SCLEB, these two classes produce four new different 
classes, all similar to 𝑅3. Continuing this process, we get new different classes in each subdivision level, following the same pattern 
that the SCLEB of 𝑅1, until reaching the convergence.

Example 2. Let 𝑄 = (105, 104, 103, 102, 101, 100) be another tetrahedron belonging to 𝑅∗
1 . The iterative SCLEB of 𝑄 does not converge 

in a finite number of similarity classes. In the first subdivision step, the new classes 𝑄1 = [416, 404, 400, 309, 105, 301] and 𝑄2 =
[412, 408, 400, 309, 105, 301] appear. The main difference of the new classes concerning those produced in Example 1 (𝑇1 and 𝑇2) is 
that these new classes do not belong to 𝑅∗

2 (they are not similar, due to the order of the edges in the similarity class). In this case, we 
have that 𝛿(𝑄1.∕𝑅2) = 𝛿(𝑄2.∕𝑅2) = 8.6. Therefore, they do not follow the same pattern subdivision as in the regular case. Continue 
this process iteratively to see that 𝑄 does not converge in a finite number of similarity classes.

Examples 1 and 2 show that the SCLEB are quite sensible to the precision of edge lengths. This may cause the sextuple normaliza-
tion for tetrahedra with very close edge lengths can result in different sextuple representations. For example, in 𝑅2 = [4, 4, 4, 3, 3, 1]
we see that having its 3 longest edges exactly equal, normalization always puts in the first place to the edge opposite to the one 
of length 1. However, in tetrahedra 𝑇1, 𝑇2, 𝑄1, and 𝑄2, whose geometric shapes are very similar to that of 𝑅2, it happens that 
depending on which is the largest edge, it produces a different sextuple order. Therefore, we may find a criterion that allows us to 
detect which tetrahedra in 𝑅∗

1 converge in the SCLEB and which do not.
The second condition announced by Adler for the convergence of nearly equilateral tetrahedra concerns whether the second 

longest edge is opposite to the longest edge. We confirm in Lemma 2 this important condition for the convergence in terms of the 
normalized sextuple representation of tetrahedra.

Lemma 2. Let 𝑇 = [𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ] an arbitrary similarity class belonging to 𝑅∗
1 . Then the SCLEB of 𝑇 converges into a finite number of 

similarity classes if and only if 𝐹 ≥𝐵.

Proof. An alternative form for 𝑇 is 𝑇 = [1, 𝐵′, 𝐶 ′, 𝐷′, 𝐸′, 𝐹 ′], extracting the value of A as a scale factor. In this way, we know that 
𝐵′, 𝐶 ′, 𝐷′, 𝐸′, and 𝐹 ′ are values close to or equal to 1, but never higher.

The SCLEB of 𝑇 produces two new classes 𝑇1 and 𝑇2. According to Equation (3), we obtain that 𝑇1 = [1, 4𝐵′, 2𝐵′ + 2𝐶 ′ − 1, 2𝐸′ +
2𝐷′ − 1, 4𝐸′, 4𝐹 ′]. It is easy to see that 𝑇1 will have values very similar to [1, 4, 3, 3, 4, 4]. Therefore to impose that 𝑇1 ≈ 𝑅2 =
[4, 4, 4, 3, 3, 1], the longest edge must be 4𝐹 ′, whose opposite edge is the one of value 1. Therefore, it must be true that 4𝐹 ′ is greater 
than the other two high values in the sextuple (second and fifth positions). This means that 𝐹 ′ ≥𝐵′, 𝐸′.

𝑇2 follows the expression [1, 2𝐵′ +′ 2𝐶 ′ − 1, 4𝐶 ′, 4𝐷′, 2𝐸′ + 2𝐷′ − 1, 4𝐹 ′], which is similar to [1, 3, 4, 4, 3, 4]. Proceeding in the 
6

same way, 𝑇2 will belong to 𝑅∗
2 if 4𝐹 ′ ≥ 4𝐶 ′, 4𝐷′. That means that, 𝐹 ′ ≥ 𝐶 ′, 𝐷′.
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Fig. 6. Inequalities of the original lengths of 𝑇 .

Since 𝐵 ≥ 𝐶, 𝐷, 𝐸 (see Remark 1), it is easy to see that the condition of convergence can be simplified as 𝐹 ≥ 𝐵. As in the 
normalized sextuple representation it is also fulfilled that A and F are opposite, we can conclude that this statement is equivalent to 
the one conjectured by Adler, who indicated that the second longest edge must be opposite to the longest edge. □

Definition 9. We call 𝑅+
1 to be the subset of 𝑅∗

1 of all the tetrahedra that converge into a finite number of similarity classes.

Lemma 3. For all tetrahedra in 𝑅+
1 it holds that 𝐴 ≥ 𝐹 ≥𝐵 ≥ 𝐶, 𝐷, 𝐸.

Proof. The sextuple normalization implies that 𝐴 ≥ 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 and 𝐵 ≥ 𝐶, 𝐷, 𝐸. And according to Lemma 2, the tetrahedron 
converges if 𝐹 ≥ 𝐵. Therefore, 𝐴 ≥ 𝐹 ≥ 𝐵 ≥ 𝐶, 𝐷, 𝐸. □

5. Convergence of nearly equilateral tetrahedra into a finite number of similarity classes

We have just derived the Adler main condition that indicates whether the SCLEB of nearly equilateral tetrahedra converges into a 
finite number of classes. But the reason why it never converges on more than 37 classes can also be deduced. In this section, we just 
focus on those tetrahedra where all their edge lengths are different, and in the following section, we will study the case of repeated 
edges.

Lemma 4. Each new similarity class generated by the SCLEB applied to a class 𝑇 can be determined as linear combinations of the original 
values of 𝑇 .

Proof. It can be seen from Equations (3) and (4) that the expressions for the new two classes that appear in the SCLEB are lin-
ear combinations of their parent. Therefore, the expressions of each new class appearing in any level of the iterated SCLEB of a 
tetrahedron 𝑇 can be obtained as linear combinations of the original values of 𝑇 . □

Lemma 5. Let 𝑇 = (𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ) be a tetrahedron in 𝑅+
1 with all edges having different lengths. The SCLEB applied to 𝑇 produces 

exactly 37 new similarity classes.

Proof. Since 𝑇 ∈ 𝑅+
1 , and all its edges are of different lengths, it holds that 𝐴 > 𝐹 > 𝐵 > 𝐶, 𝐷, 𝐸 and 𝐶 ≠ 𝐷 ≠ 𝐸. For this proof, 

we use the Equations (3) and (4) from Definition 5, and Fig. 2 from Definition 1, to build the normalized sextuples of tetrahedra 
generated in each step of bisection. Finally, to check the new classes we use the Definition 3.

In the SCLEB process, new mediatrices appear that become edges in the newly generated classes. These mediatrices, 𝐺, 𝐻, 𝐽, 𝐾 , 
can be computed with the following expressions:

4𝐺 = 2𝐵 + 2𝐶 −𝐴 (6)

4𝐻 = 2𝐷 + 2𝐸 −𝐴 (7)

4𝐽 = 2𝐵 + 2𝐸 − 𝐹 (8)

4𝐾 = 2𝐷 + 2𝐶 − 𝐹 (9)

Fig. 6 shows the relations between these mediatrices and the original edges of 𝑇 . These inequalities come from the fact that when 
the SCLEB is applied to a nearly equilateral triangle, the two sub-triangles are nearly right-angled triangles and the largest angles 
located around the midpoints edges 𝐴 and 𝐹 are nearly right angles, as it happens with the equilateral triangle.

Fig. 7 shows the 7 steps of the full iterated SCLEB of 𝑇 = [𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ]. It is important to take into account that in each step 
of bisection, all the similarity classes that have appeared previously are not subdivided again, and only new similarity classes will 
be bisected. It can also be seen that all the sextuples of new tetrahedra generated are linear combinations of the original values of 𝑇
according to Lemma 4. Let {𝑇1, 𝑇2, … , 𝑇37} be the sequence of 37 similarity classes generated by the SCLEB of 𝑇 , with 𝑇1 = 𝑇 . Next, 
7

we study each step of SCLEB.
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Fig. 7. The sequence of the 37 similarity classes for 𝑇1 = [𝐴,𝐵,𝐶,𝐷,𝐸,𝐹 ].
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Step 1. The SCLEB of 𝑇1 generates 𝑇2 and 𝑇3, with mediatrices 𝐻 and 𝐺 (see Fig. 7 b)). The longest edge for 𝑇2 and 𝑇3 is 𝐹 . The 
longest edge connected to 𝐹 is 𝐵 for 𝑇2, and 𝐶 or 𝐷 for 𝑇3, depending on which of the two is the longest one.

Step 2. Four new classes 𝑇4, 𝑇5, 𝑇6 and 𝑇7 are generated (see Fig. 7 c)). In addition to mediatrices 𝐽 and 𝐾 that appear in this 
step, a new interior edge 𝐼 which connects the midpoints of edges A and F appears, where

4𝐼 = −𝐴+𝐵 +𝐶 +𝐷 +𝐸 − 𝐹 (10)

From Fig. 6, it can be seen that 𝐵, 𝐶 >𝐺 >𝐴∕4 and 𝐵, 𝐸 > 𝐽 > 𝐴∕4. Besides, 𝐺, 𝐽 > 𝐼 since

𝐺 > 𝐼 ⟹𝐵 +𝐶 + 𝐹 >𝐷 +𝐸

𝐽 > 𝐼 ⟹ 𝐵 +𝐸 +𝐴> 𝐶 +𝐷
(11)

then, the longest edges of 𝑇4, 𝑇5 and 𝑇6 are 𝐵, 𝐸 and 𝐶 , respectively.
For 𝑇4 the longest edge connected to 𝐵 can be 𝐺 or 𝐽 , and for 𝑇6 the longest edge connected to 𝐶 can be 𝐺 or 𝐾 . Therefore, 

the second edge in the sextuple for both tetrahedra depends on which of the two mediatrices is the longest one in each case. It is 
important to remark that when 𝐺 = 𝐽 or 𝐺 = 𝐾 the sextuple chosen for 𝑇4 and 𝑇6 requires to have 𝐴 as the third edge because 
𝐴 > 𝐹 . For 𝑇5, 𝐽 >𝐻 , then the longest edge connected to 𝐸 is 𝐽 , since

4𝐽 = 2𝐵 + 2𝐸 − 𝐹 > 4𝐻 = 2𝐸 + 2𝐷 −𝐴⟹ 2𝐵 +𝐴> 𝐹 + 2𝐷

For 𝑇7, 𝐷 >𝐴∕4 since 2𝐷 + 2𝐶 >𝐴 + 𝐹 so 𝐷 is the longest one. Besides, 𝐾, 𝐻 > 𝐼 since

𝐾 > 𝐼 ⟹ 𝐶 +𝐷 +𝐴>𝐵 +𝐸

𝐻 > 𝐼 ⟹𝐸 +𝐷 + 𝐹 > 𝐵 +𝐶.
(12)

Therefore, 𝐷 becomes the first edge in the sextuple. The longest edge connected to 𝐷 can be 𝐻 or 𝐾 , depending on which of the 
two is the longest one. When 𝐻 =𝐾 , 𝐴 becomes the third edge in the sextuple.

Step 3. Eight new classes 𝑇8, 𝑇9, ..., 𝑇15 are generated (see Fig. 7 d)). Note that all original edges have already been subdivided. 
It is clear that for 𝑇8 and 𝑇12, the longest edge is 𝐺, for 𝑇9 and 𝑇10 is 𝐽 , and for 𝑇11 and 𝑇15 is 𝐻 (see Fig. 6 and Equations (11)
and (12)). Besides, for 𝑇8 and 𝑇12 the longest edge connected to 𝐺 is either 𝐹 or 𝐼 , for 𝑇9 and 𝑇10 the longest edge connected to 𝐽 is 
either 𝐴 or 𝐼 , and for 𝑇11 and 𝑇15 the longest edge connected to 𝐻 is either 𝐹 or 𝐼 . The second and third edges in the sextuples 𝑇9
and 𝑇10 is either 𝐴 or 𝐼 , and in the sextuples 𝑇8 and 𝑇12 is either 𝐹 or 𝐼 . Note that, when 𝐴 = 4𝐼 or 𝐹 = 4𝐼 , 𝐵 becomes the fourth 
edge in the sextuple (see Fig. 7 d)). Finally for 𝑇13 and 𝑇14 the longest edge is 𝐾 , and the longest edge connected to 𝐾 is either 𝐴 or 
𝐼 .

It is important to remark on the next cases when 4𝐼 =𝐴 or 4𝐼 = 𝐹 :

𝑇11: If 4𝐼 = 𝐹 , we take 𝑇11 = [4𝐻, 4𝐼, 𝐹 , 𝐸, 𝐷, 𝐵] if 𝐸 >𝐷, or 𝑇11 = [4𝐻, 𝐹 , 4𝐼, 𝐷, 𝐸, 𝐵] if 𝐷 >𝐸.
𝑇13: If 4𝐼 =𝐴, we take 𝑇13 = [4𝐾, 4𝐼, 𝐴, 𝐷, 𝐶, 𝐵] if 𝐷 >𝐶 or 𝑇13 = [4𝐾, 𝐴, 4𝐼, 𝐶, 𝐷, 𝐵] if 𝐶 >𝐷.
𝑇14: If 4𝐼 =𝐴, we take 𝑇14 = [4𝐾, 4𝐼, 𝐴, 𝐷, 𝐶, 𝐸] if 𝐷 >𝐶 or 𝑇14 = [4𝐾, 𝐴, 4𝐼, 𝐶, 𝐷, 𝐸] if 𝐶 >𝐷.
𝑇15: If 4𝐼 = 𝐹 , we take 𝑇15 = [4𝐻, 4𝐼, 𝐹 , 𝐷, 𝐸, 𝐶] if 𝐷 >𝐸 or 𝑇15 = [4𝐻, 𝐹 , 4𝐼, 𝐸, 𝐷, 𝐶] if 𝐸 >𝐷.

Step 4. Up to step 3, the number of new similarity classes generated in each step is 2𝑛 with 𝑛 = 0, 1, 2, 3. In the fourth step, 16
classes are generated but only 6 are new. The four classes marked with a red diamond in Figs. 7 b) and e) have already appeared in 
the first step. Normalized sextuples for these four classes can be written as 𝑘𝑇2 and 𝑘𝑇3 with 𝑘 = 0.25 (see Definition 3). Note that 
𝑇17 and 𝑇19 are generated twice with 𝑘 = 1 (see blue circle in Fig. 7 e)).

The eight classes sharing a common edge 𝐼 are 𝑇16, 𝑇18, 𝑇20 and 𝑇21, generated twice (see Fig. 7 e)). Therefore, the new 6 
similarity classes are 𝑇16, 𝑇17, 𝑇18, 𝑇19, 𝑇20 and 𝑇21.

The sextuple 𝑇17 is straightforward (see Fig. 7 e)). For 𝑇19, it was proved that 𝐸 > 𝐽 and 𝐷 > 𝐾 (see Fig. 6 b)), then it follows 
that 𝐵 > 𝐽, 𝐾 . Also, 𝐵 >𝐻 since it has already proved that 𝐽 >𝐻 and 𝐵 > 𝐺 from Fig. 6 a). The longest edge for 𝑇19 is 𝐴, and the 
longest edge connected to 𝐴 is either 𝐸 or 𝐷.

For the remaining classes, we study if 4𝐼 > 𝐵. Obviously when 4𝐼 ≥ 𝐴 or 4𝐼 ≥ 𝐹 , then 4𝐼 > 𝐵, because 𝐴, 𝐹 > 𝐵. Fig. 8 shows 
the case where 𝑇1 has already been subdivided into eight tetrahedra. We focus on diagonals of parallelograms with edges 𝐵, 𝐷 and 
𝐶, 𝐸 (see Figs. 8 b) and c)). Notice that these edges are opposite each other in 𝑇1, and both parallelograms are nearly squares since 
𝑇1 is nearly equilateral. Diagonal 𝐼 is already known, and the new ones are 𝐿 and 𝑀 , which can be written as a linear combination 
of the values of 𝑇1, 4𝐿 =𝐴 +𝐵 − 𝐶 +𝐷 −𝐸 + 𝐹 and 4𝑀 = 𝐴 −𝐵 +𝐶 −𝐷 +𝐸 + 𝐹 . The shortest diagonal for both parallelograms 
is 𝐼 since,

𝐿 > 𝐼 ⟹ 𝐹 +𝐴> 𝐶 +𝐸

𝑀 > 𝐼 ⟹ 𝐹 +𝐴>𝐵 +𝐷.
(13)

All these diagonals cut off at the same point, and 𝐼 is the diagonal common to both parallelograms. Fig. 8 b) shows that the 
diagonal 𝐼 > 𝐵∕4, 𝐷∕4, since the parallelogram is nearly square. Therefore, for 𝑇16, 𝑇18, 𝑇20 and 𝑇21 the longest edge is 𝐼 . For 𝑇20
9

and 𝑇21 the longest edge connected to 𝐼 is 𝐵, and for 𝑇16 and 𝑇18 is either 𝐶 or 𝐸. All these sextuples are depicted in Fig. 7 e). Notice 
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Fig. 8. Relation among original edges of 𝑇1 and interior edges.

Fig. 9. Similarity classes between two pairs of sub-tetrahedra belonging to 6 and 3 bisection steps.

that when this step is finished, all mediatrices have already been subdivided, and also this is the first time where some similarity 
classes have already appeared.

Step 5. In this step, 12 classes are generated but only 8 are new, because 4 have already appeared. These 4 repeated classes are 
labeled with a black diamond in Fig. 7 f), which are the same classes that already appeared in Fig. 7 c) in the second step. Note that 
these classes can be written as 𝑘𝑇4, 𝑘𝑇5, 𝑘𝑇6 and 𝑘𝑇7 with 𝑘 = 0.25 (see Definition 3).

From Fig. 8 b) and c) it is clear that 𝐵, 𝐷 > 𝐿 and 𝐸, 𝐶 >𝑀 . Note that the longest edge of 𝑇22, 𝑇23, 𝑇24, 𝑇25, 𝑇26, 𝑇27, 𝑇28 and 
𝑇29, is one of the edges 𝐵, 𝐶 , 𝐷, or 𝐸. For these classes, the longest edges connected to the longest ones are either the mediatrices 
𝐻, 𝐺, 𝐽, 𝐾 or the interior edges 𝐿, 𝑀 (see Fig. 7 f).

We next study the cases where the inequalities become equalities:

𝑇22: If 𝐻 = 𝑀 , 𝑇22 = [4𝐸, 4𝐻, 𝐴, 4𝑀, 4𝐼, 𝐹 ] if 𝐴 > 4𝐼 , or 𝑇22 = [4𝐸, 4𝑀, 4𝐼, 4𝐻, 𝐴, 𝐹 ] if 4𝐼 > 𝐴. Both classes are equivalent if 
4𝐼 =𝐴.

𝑇23: If 𝐺 =𝑀 , 𝑇23 = [4𝐶, 4𝐺, 𝐴, 4𝑀, 4𝐼, 𝐹 ] if 𝐴 > 4𝐼 or 𝑇23 = [4𝐶, 4𝑀, 4𝐼, 4𝐺, 𝐴, 𝐹 ] if 4𝐼 > 𝐴. Both classes are equivalent if 4𝐼 =𝐴.
𝑇24: If 𝐽 =𝑀 , 𝑇24 = [4𝐸, 4𝐽, 𝐹 , 4𝑀, 4𝐼, 𝐴] if 𝐹 > 4𝐼 or 𝑇24 = [4𝐸, 4𝑀, 4𝐼, 4𝐽, 𝐹 , 𝐴] if 4𝐼 > 𝐹 . Both classes are equivalent if 4𝐼 = 𝐹 .
𝑇25: If 𝐾 = 𝑀 , 𝑇25 = [4𝐶, 4𝐾, 𝐹 , 4𝑀, 4𝐼, 𝐴] if 𝐹 > 4𝐼 or 𝑇25 = [4𝐶, 4𝑀, 4𝐼, 4𝐾, 𝐹 , 𝐴] if 4𝐼 > 𝐹 . Both classes are equivalent If 

4𝐼 = 𝐹 .
𝑇26: If 𝐽 =𝐿, 𝑇26 = [4𝐵, 4𝐽, 𝐹 , 4𝐿, 4𝐼, 𝐴] if 𝐹 > 4𝐼 or 𝑇26 = [4𝐵, 4𝐿, 4𝐼, 4𝐽, 𝐹 , 𝐴] if 4𝐼 > 𝐹 . Both classes are equivalent if 4𝐼 = 𝐹 .
𝑇27: If 𝐾 =𝐿, 𝑇27 = [4𝐷, 4𝐾, 𝐹 , 4𝐿, 4𝐼, 𝐴] if 𝐹 > 4𝐼 or 𝑇27 = [4𝐷, 4𝐿, 4𝐼, 4𝐾, 𝐹 , 𝐴] if 4𝐼 > 𝐹 . Both classes are equivalent if 4𝐼 = 𝐹 .

Step 6. In this step 16 classes are generated but only 4 are new. The 8 classes which have already appeared in the third step, are 
depicted in Fig. 7 g) by pairs with their respective partners, 𝑇8, 𝑇9, 𝑇10, 𝑇11, 𝑇12, 𝑇13, 𝑇14 and 𝑇15. Fig. 9 shows two examples of 
pairs of classes where their respective sextuples can be obtained by multiplying each other by 𝑘 = 0.25. Notice that the new classes 
𝑇30, 𝑇31, 𝑇32 and 𝑇33 are repeated twice in this step.

To build the sextuples of the new classes, we only need to study if 𝐿, 𝑀 >𝐴∕4.

4𝐿>𝐴⟹𝐵 +𝐷 + 𝐹 > 𝐶 +𝐸

4𝑀 >𝐴⟹ 𝐶 +𝐸 + 𝐹 > 𝐵 +𝐷.

It is clear that the second edge is 𝐴, and the four sextuples are built straightforwardly (see Fig. 7 g)).
Step 7. In the seventh step, the last four similarity classes are generated 𝑇34, 𝑇35, 𝑇36 and 𝑇37 (see Fig. 7 h)). The longest edges 

of these classes are either 𝐴 or 𝐹 . For 𝑇36 and 𝑇37, 𝐵 is the longest edge connected to 𝐴 and 𝐹 respectively. For 𝑇34 and 𝑇35, the 
longest edges connected to 𝐴 and 𝐹 are either 𝐶 or 𝐷.

Step 8. In the eighth step, no more new classes are generated by the SCLEB, since all of them have already appeared in step 5. 
These classes are 𝑇22, 𝑇23, 𝑇24, 𝑇25, 𝑇26, 𝑇27, 𝑇28 and 𝑇29. They have been depicted in pairs in Fig. 7 i) with their respective partners 
from this step. Notice that these sextuples can be obtained by multiplying each other by 𝑘 = 0.25. □

Remark 7. The number of unique similarity classes appearing in the SCLEB of 𝑅+
1 follows the sequence {1, 2, 4, 8, 6, 8, 4, 4, 0}, as can 
10

be seen in Fig. 10, where the genealogy tree for the 37 different similarity classes is shown.
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Fig. 10. Binary tree for the 37 different similarity classes.

6. Study of 𝑹+
𝟏 tetrahedra with repeated edge lengths

We have proved that all the tetrahedra 𝑇 = (𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ) belonging to the family 𝑅+
1 that have all their edges different, 

always generate exactly 37 similarity classes, which correspond to the 37 different expressions depicted in Fig. 10. However, when 
tetrahedra have some equal edges, it happens that some of these expressions produce the same values in the sextuples, resulting in 
repeated similarity classes. This means that we can find less than 37 similarity classes in many cases. In practice, when we work 
with tetrahedral meshes, especially when some refinement strategies based on the LEB are used, edge lengths may differ from one 
tetrahedron to another, even in very small amounts. The cases where there are equal edges represent some minor cases. This leads to 
a scenario where most cases in a tetrahedral mesh containing nearly equilateral tetrahedra may converge into 37 similarity classes.

Lemma 6. Let 𝑇 = [𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ] be a class in 𝑅+
1 . There can be up to 37 sextuples representing the different tetrahedra classes when 

the SCLEB is applied to T.

Proof. Note that for the case that all lengths are different, we apply Lemma 5, and then there are exactly 37 similarity classes. For 
the case of repeated edge lengths, the number of similarity classes can be less than 37. In this case, some of the classes produce the 
same values in sextuples, resulting in repeated similarity classes. □

A clear example of a similarity class with repeated edges in 𝑅+
1 is the regular 𝑅1 = [1, 1, 1, 1, 1, 1], with all its edges equal. We 

already saw in section 3 (Lemma 1) that this class converges exactly in 8 classes, given by the graph of Fig. 3. By using the diagram of 
Fig. 7 we can determine the 8 similarity classes for the SCLEB of the regular as follows: the two classes generated in step 1 becomes 
the class 𝑅2 = [4, 4, 4, 3, 3, 1], all the 4 classes generated in step 2 becomes the class 𝑅3 = [4, 3, 1, 3, 1, 2], and so on until reaching 8
similarity classes in 7 steps.

Other examples with repeating edges, which can be tested using the diagram in Fig. 7, are:

• Example 1: Classes converging into 21 similarity classes. These are for example classes with a pair of repeated interior edge 
lengths, as [12, 10, 8, 8, 9, 11] and [15, 12, 10, 10, 11, 13].

• Example 2: Classes converging into 13 similarity classes. This happens when the interior edges are equal to their opposite edges. 
See for example [4, 3, 3, 3, 3, 3] and [6, 5, 4, 5, 4, 6].

• Example 3. Classes converging into 9 similarity classes. This is the case when 𝐴 = 𝐹 and three of the four interior edges are 
equal, as [7, 6, 5, 5, 5, 7] and [9, 7, 7, 7, 6, 9].

• Example 4. Classes converging into 8 similarity classes, like those with four equal interior edges as [5, 4, 4, 4, 4, 5] and 
[7, 5, 5, 5, 5, 6], or the regular [1, 1, 1, 1, 1, 1].
11

• Example 5. The class [4, 3, 3, 3, 3, 4] converges only into 4 similarity classes.
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Fig. 11. Near equilateral Adler tetrahedra with 5% is remarked and also the tetrahedra with new bound of 22.47%.

7. An improved bound for the 𝑹+
𝟏 family

In his original paper [1] Adler studied the family of tetrahedra that converged into 37 or fewer classes to be those nearly 
equilateral tetrahedra whose edge lengths are within 5%. As seen in Section 4 this is equivalent in terms of 𝛿 to 𝛿(𝑇 ) < 𝛿𝐴 = 1.1025. 
Next lemma gives the maximum threshold of 𝛿 that guarantees that a tetrahedron of 𝑅∗

1 converges into 37 or fewer classes, and then 
we state the condition to belong to 𝑅+

1 .

Lemma 7. Let 𝑇 = [𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ] being 𝐹 ≥𝐵 and 𝛿(𝑇 ) ≤ 3
2 . Then, 𝑇 converges into 37 or fewer classes, and therefore 𝑇 ∈𝑅+

1 .

Proof. We want to find what is the maximum threshold value for delta which guarantees the convergence of 𝑇 . To do that, we must 
check that all the 37 classes generated in the SCLEB of 𝑇 according to Fig. 7 are correctly normalized, fulfilling the conditions of 
Remark 1: the first value of the class must be greater or equal to the rest of values, and the second value must be greater than the 
3rd, 4th and 5th values. Exploring which is the worst scenario for all the classes, will lead to compute the threshold value of 𝛿(𝑇 )
that guarantees the convergence of 𝑇 .

For example, in the case of 𝑇2 = [4𝐹 , 4𝐵, 4𝐸, 4𝐻, 4𝐺, 𝐴], it would be necessary to verify that the first value (4𝐹 ) is greater than 
the rest of the values of the sextuple, and the second value (4𝐵) is greater than the third, fourth and fifth value. It is clear that 
𝐹 ≥ 𝐵 ≥ 𝐸 using Lemma 3. From definitions of 𝐻, 𝐺 (see Equations (7) and (6)) it is easy to see that 𝐹 and 𝐵 are greater than 𝐻
and 𝐺. To deduce that 4𝐹 ≥ 𝐴, let 𝑚 be the minimum of the six values of the class [𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ]. Since 𝐹 ≥ 𝑚, we can deduce 
that 4𝐹 ≥ 4𝑚 ≥𝐴 if 𝛿(𝑇 ) =𝐴∕𝑚 ≤ 4.

Using a similar reasoning for all similarity classes 𝑇3, 𝑇4, … , 𝑇37 in the diagram, we can find that the most restrictive case that 
produces the smallest bound for 𝛿(𝑇 ) holds for 𝑇20 = [16𝐼, 4𝐵, 4𝐷, 4𝐾, 4𝐽, 𝐹 ]. In this class, to guarantee that 16𝐼 ≥ 4𝐷, it can be 
deduced (see Equation (10)) that 𝐴 + 𝐹 ≤ 𝐵 + 𝐶 +𝐸 must be fulfilled. And therefore 𝐴 + 𝐹 ≤ 2𝐴 ≤ 3𝑚 ≤ 𝐵 + 𝐶 +𝐸, from which it 
follows that 𝛿(𝑇 ) =𝐴∕𝑚 ≤ 3

2 . □

Remark 8. Considering that the six values of a class are the square of the edges, the condition 𝛿(𝑇 ) ≤ 3
2 means that the ratio between 

the lengths of the maximum and minimum edges is less than or equal to 
√

3
2 , which is equivalent to saying that its edge lengths are 

within 22.47%.

Lemma 7 considerably improves the condition given by Adler of the 5% as a criterion of convergence for the nearly equilateral 
tetrahedra. Fig. 11 shows the bound by Adler 𝛿𝐴, and the new bound, 𝛿𝑛𝑒𝑤 = 3

2 that improves the criterion to belong to 𝑅+
1 . The new 

bound of 22.47%, clearly extends the family of tetrahedra originally called “nearly equilateral”.
We remark here the interesting fact that, as we improve the bound of 𝛿 to a higher value than Adler, a tetrahedra class like 

𝑄 = [3, 2, 2, 2, 2, 3] with 𝛿(𝑄) = 3
2 holds a geometric shape very different to the regular 𝑅1. Indeed, 𝑄 has two obtuse dihedral angles, 

unlike 𝑅1 whose angles are approximately 70◦. Then, our new bound 𝛿𝑛𝑒𝑤 can cause a misleading situation as we may be calling 
near equilateral to those tetrahedra whose shapes are far away from being equilateral, as 𝑄. To avoid this scenario, instead of using 
the term near equilateral class, we will refer as 𝑅+

1 to those tetrahedra with 𝛿 ∈ [1, 32 ].

8. Conclusions

The SCLEB of nearly equilateral tetrahedra, first introduced by Adler [1] is revisited here with a complete study of important 
properties that concern the convergence of the number of similarity classes. Nearly equilateral and regular tetrahedra are important 
as they give many keys to the convergence of the SCLEB method into a finite number of similarity classes. Some difficulties in the 
12

study of those families of tetrahedra arise with the equality of edge lengths and the selection of the bisection edge, where the regular 
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case represents a singular example. To overcome the difficulties of the representation issues, shape comparison, and tetrahedra 
subdivision, we have used a sextuple edge-based representation.

We prove that there is a family of tetrahedra whose SCLEB introduces a finite number of classes less than or equal to 37. We 
determine the conditions for the convergence up to 37 similarity classes. We also improve the bound of 5% to 22.47% of the family 
of nearly equilateral tetrahedra satisfying the convergence into a finite number of similarity classes and give a proof of such a new 
bound.

Note that the bound 𝛿(𝑇 ) ≤ 3
2 with 𝐹 ≥ 𝐵 guarantees that tetrahedra 𝑇 converges and therefore belongs to 𝑅+

1 . However, the 
opposite is not true. There are tetrahedra with 𝛿(𝑇 ) > 3

2 that converge, and others that do not. In a forthcoming study, we can 
completely delimit the 𝑅+

1 region for which all tetrahedra converge in the SCLEB.
As a future work, it is very interesting to study the other seven families of tetrahedra derived from the graph of the iterative SCLEB 

of the regular tetrahedron. This comprises the families 𝑅+
2 , 𝑅

+
3 , … , 𝑅+

8 together with the bounds of 𝛿 for assuring the convergence 
into a finite number of similarity classes.
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