Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/129360
Título: | Machine Learning Techniques for Canine Myxomatous Mitral Valve Disease Classification: Integrating Anamnesis, Quality of Life Survey, and Physical Examination | Autores/as: | Engel Manchado, Javier Carlos Montoya Alonso, José Alberto Doménech, Luis Monge Utrilla, Oscar Reina Doreste, Yamir Matos Rivero, Jorge Isidoro Caro Vadillo,Alicia García Guasch,Laín Redondo, José Ignacio |
Clasificación UNESCO: | 310904 Medicina interna | Palabras clave: | Anamnesis Clinical Diagnosis Dog Machine Learning Myxomatous Mitral Valve Disease, et al. |
Fecha de publicación: | 2024 | Publicación seriada: | Veterinary Sciences | Resumen: | Myxomatous mitral valve disease (MMVD) is a prevalent canine cardiac disease typically diagnosed and classified using echocardiography. However, accessibility to this technique can be limited in first-opinion clinics. This study aimed to determine if machine learning techniques can classify MMVD according to the ACVIM classification (B1, B2, C, and D) through a structured anamnesis, quality of life survey, and physical examination. This report encompassed 23 veterinary hospitals and assessed 1011 dogs for MMVD using the FETCH-Q quality of life survey, clinical history, physical examination, and basic echocardiography. Employing a classification tree and a random forest analysis, the complex model accurately identified 96.9% of control group dogs, 49.8% of B1, 62.2% of B2, 77.2% of C, and 7.7% of D cases. To enhance clinical utility, a simplified model grouping B1 and B2 and C and D into categories B and CD improved accuracy rates to 90.8% for stage B, 73.4% for stages CD, and 93.8% for the control group. In conclusion, the current machine-learning technique was able to stage healthy dogs and dogs with MMVD classified into stages B and CD in the majority of dogs using quality of life surveys, medical history, and physical examinations. However, the technique faces difficulties differentiating between stages B1 and B2 and determining between advanced stages of the disease | URI: | http://hdl.handle.net/10553/129360 | ISSN: | 2306-7381 | DOI: | 10.3390/vetsci11030118 | Fuente: | Veterinary Sciences[ISSN2306-7381], v.11(3) |
Colección: | Artículos |
Citas SCOPUSTM
1
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 15-dic-2024
Visitas
52
actualizado el 21-sep-2024
Descargas
21
actualizado el 21-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.