Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/129360
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Engel Manchado, Javier Carlos | - |
dc.contributor.author | Montoya Alonso, José Alberto | - |
dc.contributor.author | Doménech, Luis | - |
dc.contributor.author | Monge Utrilla, Oscar | - |
dc.contributor.author | Reina Doreste, Yamir | - |
dc.contributor.author | Matos Rivero, Jorge Isidoro | - |
dc.contributor.author | Caro Vadillo,Alicia | - |
dc.contributor.author | García Guasch,Laín | - |
dc.contributor.author | Redondo, José Ignacio | - |
dc.date.accessioned | 2024-03-13T09:38:58Z | - |
dc.date.available | 2024-03-13T09:38:58Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 2306-7381 | - |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/129360 | - |
dc.description.abstract | Myxomatous mitral valve disease (MMVD) is a prevalent canine cardiac disease typically diagnosed and classified using echocardiography. However, accessibility to this technique can be limited in first-opinion clinics. This study aimed to determine if machine learning techniques can classify MMVD according to the ACVIM classification (B1, B2, C, and D) through a structured anamnesis, quality of life survey, and physical examination. This report encompassed 23 veterinary hospitals and assessed 1011 dogs for MMVD using the FETCH-Q quality of life survey, clinical history, physical examination, and basic echocardiography. Employing a classification tree and a random forest analysis, the complex model accurately identified 96.9% of control group dogs, 49.8% of B1, 62.2% of B2, 77.2% of C, and 7.7% of D cases. To enhance clinical utility, a simplified model grouping B1 and B2 and C and D into categories B and CD improved accuracy rates to 90.8% for stage B, 73.4% for stages CD, and 93.8% for the control group. In conclusion, the current machine-learning technique was able to stage healthy dogs and dogs with MMVD classified into stages B and CD in the majority of dogs using quality of life surveys, medical history, and physical examinations. However, the technique faces difficulties differentiating between stages B1 and B2 and determining between advanced stages of the disease | - |
dc.language | eng | - |
dc.relation.ispartof | Veterinary Sciences | - |
dc.source | Veterinary Sciences[ISSN2306-7381], v.11(3) | - |
dc.subject | 310904 Medicina interna | - |
dc.subject.other | Anamnesis | - |
dc.subject.other | Clinical Diagnosis | - |
dc.subject.other | Dog | - |
dc.subject.other | Machine Learning | - |
dc.subject.other | Myxomatous Mitral Valve Disease | - |
dc.subject.other | Predictive Model | - |
dc.title | Machine Learning Techniques for Canine Myxomatous Mitral Valve Disease Classification: Integrating Anamnesis, Quality of Life Survey, and Physical Examination | - |
dc.type | Article | - |
dc.identifier.doi | 10.3390/vetsci11030118 | - |
dc.identifier.scopus | 85189164228 | - |
dc.identifier.isi | 001192705100001 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | 0000-0002-2683-7592 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | 0000-0001-5356-2259 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | 0000-0003-4273-2413 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | 0000-0002-8966-5265 | - |
dc.contributor.orcid | 0000-0001-5377-9650 | - |
dc.contributor.authorscopusid | 57202741073 | - |
dc.contributor.authorscopusid | 6504331949 | - |
dc.contributor.authorscopusid | 56155831400 | - |
dc.contributor.authorscopusid | 58180116700 | - |
dc.contributor.authorscopusid | 55837203100 | - |
dc.contributor.authorscopusid | 57209394252 | - |
dc.contributor.authorscopusid | 7005533581 | - |
dc.contributor.authorscopusid | 53877412800 | - |
dc.contributor.authorscopusid | 7005458066 | - |
dc.identifier.eissn | 2306-7381 | - |
dc.identifier.issue | 3 | - |
dc.relation.volume | 11 | - |
dc.investigacion | Ciencias de la Salud | - |
dc.type2 | Artículo | - |
dc.contributor.daisngid | 30064196 | - |
dc.contributor.daisngid | 56594904 | - |
dc.contributor.daisngid | 50793629 | - |
dc.contributor.daisngid | 42885634 | - |
dc.contributor.daisngid | 27495911 | - |
dc.contributor.daisngid | 55571 | - |
dc.contributor.daisngid | 56670952 | - |
dc.contributor.daisngid | 34576997 | - |
dc.contributor.daisngid | 56661868 | - |
dc.description.numberofpages | 19 | - |
dc.utils.revision | Sí | - |
dc.contributor.wosstandard | WOS:Engel-Manchado, J | - |
dc.contributor.wosstandard | WOS:Montoya-Alonso, JA | - |
dc.contributor.wosstandard | WOS:Doménech, L | - |
dc.contributor.wosstandard | WOS:Monge-Utrilla, O | - |
dc.contributor.wosstandard | WOS:Reina-Doreste, Y | - |
dc.contributor.wosstandard | WOS:Matos, JI | - |
dc.contributor.wosstandard | WOS:Caro-Vadillo, A | - |
dc.contributor.wosstandard | WOS:García-Guasch, L | - |
dc.contributor.wosstandard | WOS:Redondo, JI | - |
dc.date.coverdate | Marzo 2024 | - |
dc.identifier.ulpgc | Sí | - |
dc.contributor.buulpgc | BU-VET | - |
dc.description.sjr | 0,552 | - |
dc.description.jcr | 2,4 | - |
dc.description.sjrq | Q1 | - |
dc.description.jcrq | Q1 | - |
dc.description.miaricds | 10,3 | - |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUIBS: Medicina Veterinaria e Investigación Terapéutica | - |
crisitem.author.dept | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.dept | Departamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos | - |
crisitem.author.dept | GIR IUIBS: Medicina Veterinaria e Investigación Terapéutica | - |
crisitem.author.dept | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.dept | GIR IUIBS: Medicina Veterinaria e Investigación Terapéutica | - |
crisitem.author.dept | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.dept | GIR IUIBS: Medicina Veterinaria e Investigación Terapéutica | - |
crisitem.author.dept | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.orcid | 0000-0002-2683-7592 | - |
crisitem.author.orcid | 0000-0003-4273-2413 | - |
crisitem.author.orcid | 0000-0002-1430-5855 | - |
crisitem.author.orcid | 0000-0002-8966-5265 | - |
crisitem.author.parentorg | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.parentorg | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.parentorg | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.parentorg | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.fullName | Engel Manchado, Javier Carlos | - |
crisitem.author.fullName | Montoya Alonso, José Alberto | - |
crisitem.author.fullName | Reina Doreste, Yamir | - |
crisitem.author.fullName | Matos Rivero, Jorge Isidoro | - |
crisitem.author.fullName | Caro Vadillo, Alicia | - |
crisitem.author.fullName | García Guash, Lain | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
1
checked on Nov 24, 2024
WEB OF SCIENCETM
Citations
1
checked on Nov 24, 2024
Page view(s)
52
checked on Sep 21, 2024
Download(s)
21
checked on Sep 21, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.