Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/128902
Título: Analysis of Brain Computer Interface Using Deep and Machine Learning
Autores/as: Ajali Hernández, Nabil Isaac 
Travieso-González, Carlos M. 
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: brain-computer interfaces
deep learning
pattern recognition
machine learning
artificial intelligence, et al.
Fecha de publicación: 2022
Editor/a: IntechOpen 
Resumen: Pattern recognition is becoming increasingly important topic in all sectors of society. From the optimization of processes in the industry to the detection and diagnosis of diseases in medicine. Brain-computer interfaces are introduced in this chapter. Systems capable of analyzing brain signal patterns, processing and interpreting them through machine and deep learning algorithms. In this chapter, a hybrid deep/machine learning ensemble system for brain pattern recognition is proposed. It is capable to recognize patterns and translate the decisions to BCI systems. For this, a public database (Physionet) with data of motor tasks and mental tasks is used. The development of this chapter consists of a brief summary of the state of the art, the presentation of the model together with some results and some promising conclusions.
URI: http://hdl.handle.net/10553/128902
ISBN: 978-1-83768-946-0
ISSN: 2633-1403
DOI: 10.5772/intechopen.106964
Colección:Capítulo de libro
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.