Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/128902
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Ajali Hernández, Nabil Isaac | en_US |
dc.contributor.author | Travieso-González, Carlos M. | en_US |
dc.date.accessioned | 2024-02-14T12:48:25Z | - |
dc.date.available | 2024-02-14T12:48:25Z | - |
dc.date.issued | 2022 | en_US |
dc.identifier.isbn | 978-1-83768-946-0 | en_US |
dc.identifier.issn | 2633-1403 | - |
dc.identifier.uri | http://hdl.handle.net/10553/128902 | - |
dc.description.abstract | Pattern recognition is becoming increasingly important topic in all sectors of society. From the optimization of processes in the industry to the detection and diagnosis of diseases in medicine. Brain-computer interfaces are introduced in this chapter. Systems capable of analyzing brain signal patterns, processing and interpreting them through machine and deep learning algorithms. In this chapter, a hybrid deep/machine learning ensemble system for brain pattern recognition is proposed. It is capable to recognize patterns and translate the decisions to BCI systems. For this, a public database (Physionet) with data of motor tasks and mental tasks is used. The development of this chapter consists of a brief summary of the state of the art, the presentation of the model together with some results and some promising conclusions. | en_US |
dc.language | eng | en_US |
dc.publisher | IntechOpen | en_US |
dc.subject | 33 Ciencias tecnológicas | en_US |
dc.subject.other | brain-computer interfaces | en_US |
dc.subject.other | deep learning | en_US |
dc.subject.other | pattern recognition | en_US |
dc.subject.other | machine learning | en_US |
dc.subject.other | artificial intelligence | en_US |
dc.subject.other | neural network | en_US |
dc.title | Analysis of Brain Computer Interface Using Deep and Machine Learning | en_US |
dc.type | capitulo de libro | en_US |
dc.identifier.doi | 10.5772/intechopen.106964 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Capítulo de libro | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.supplement | 2633-1403 | - |
dc.identifier.supplement | 2633-1403 | - |
dc.identifier.supplement | 2633-1403 | - |
dc.identifier.supplement | 2633-1403 | - |
dc.identifier.supplement | 2633-1403 | - |
dc.identifier.supplement | 2633-1403 | - |
dc.identifier.supplement | 2633-1403 | - |
dc.identifier.supplement | 2633-1403 | - |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-3939-5316 | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Ajali Hernández, Nabil Isaac | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
Colección: | Capítulo de libro |
Visitas
69
actualizado el 05-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.