Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/128902
Campo DC Valoridioma
dc.contributor.authorAjali Hernández, Nabil Isaacen_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.date.accessioned2024-02-14T12:48:25Z-
dc.date.available2024-02-14T12:48:25Z-
dc.date.issued2022en_US
dc.identifier.isbn978-1-83768-946-0en_US
dc.identifier.issn2633-1403-
dc.identifier.urihttp://hdl.handle.net/10553/128902-
dc.description.abstractPattern recognition is becoming increasingly important topic in all sectors of society. From the optimization of processes in the industry to the detection and diagnosis of diseases in medicine. Brain-computer interfaces are introduced in this chapter. Systems capable of analyzing brain signal patterns, processing and interpreting them through machine and deep learning algorithms. In this chapter, a hybrid deep/machine learning ensemble system for brain pattern recognition is proposed. It is capable to recognize patterns and translate the decisions to BCI systems. For this, a public database (Physionet) with data of motor tasks and mental tasks is used. The development of this chapter consists of a brief summary of the state of the art, the presentation of the model together with some results and some promising conclusions.en_US
dc.languageengen_US
dc.publisherIntechOpenen_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherbrain-computer interfacesen_US
dc.subject.otherdeep learningen_US
dc.subject.otherpattern recognitionen_US
dc.subject.othermachine learningen_US
dc.subject.otherartificial intelligenceen_US
dc.subject.otherneural networken_US
dc.titleAnalysis of Brain Computer Interface Using Deep and Machine Learningen_US
dc.typecapitulo de libroen_US
dc.identifier.doi10.5772/intechopen.106964en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Capítulo de libroen_US
dc.utils.revisionen_US
dc.identifier.supplement2633-1403-
dc.identifier.supplement2633-1403-
dc.identifier.supplement2633-1403-
dc.identifier.supplement2633-1403-
dc.identifier.supplement2633-1403-
dc.identifier.supplement2633-1403-
dc.identifier.supplement2633-1403-
dc.identifier.supplement2633-1403-
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-3939-5316-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAjali Hernández, Nabil Isaac-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Capítulo de libro
Vista resumida

Visitas

69
actualizado el 05-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.