Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/128902
DC FieldValueLanguage
dc.contributor.authorAjali Hernández, Nabil Isaacen_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.date.accessioned2024-02-14T12:48:25Z-
dc.date.available2024-02-14T12:48:25Z-
dc.date.issued2022en_US
dc.identifier.isbn978-1-83768-946-0en_US
dc.identifier.issn2633-1403-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/128902-
dc.description.abstractPattern recognition is becoming increasingly important topic in all sectors of society. From the optimization of processes in the industry to the detection and diagnosis of diseases in medicine. Brain-computer interfaces are introduced in this chapter. Systems capable of analyzing brain signal patterns, processing and interpreting them through machine and deep learning algorithms. In this chapter, a hybrid deep/machine learning ensemble system for brain pattern recognition is proposed. It is capable to recognize patterns and translate the decisions to BCI systems. For this, a public database (Physionet) with data of motor tasks and mental tasks is used. The development of this chapter consists of a brief summary of the state of the art, the presentation of the model together with some results and some promising conclusions.en_US
dc.languageengen_US
dc.publisherIntechOpenen_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherbrain-computer interfacesen_US
dc.subject.otherdeep learningen_US
dc.subject.otherpattern recognitionen_US
dc.subject.othermachine learningen_US
dc.subject.otherartificial intelligenceen_US
dc.subject.otherneural networken_US
dc.titleAnalysis of Brain Computer Interface Using Deep and Machine Learningen_US
dc.typecapitulo de libroen_US
dc.identifier.doi10.5772/intechopen.106964en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Capítulo de libroen_US
dc.utils.revisionen_US
dc.identifier.supplement2633-1403-
dc.identifier.supplement2633-1403-
dc.identifier.supplement2633-1403-
dc.identifier.supplement2633-1403-
dc.identifier.supplement2633-1403-
dc.identifier.supplement2633-1403-
dc.identifier.supplement2633-1403-
dc.identifier.supplement2633-1403-
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-3939-5316-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAjali Hernández, Nabil Isaac-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Capítulo de libro
Show simple item record

Page view(s)

69
checked on Oct 5, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.