Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/128798
Título: ANN based-model for estimating the boron permeability coefficient as boric acid in SWRO desalination plants using ensemble-based machine learning
Autores/as: Ajali Hernández, Nabil Isaac 
Ruiz García, Alejandro 
Travieso González, Carlos Manuel 
Clasificación UNESCO: 3307 Tecnología electrónica
330806 Regeneración del agua
Palabras clave: Desalination
Reverse osmosis
Boron rejection
Neural networks
Machine learning
Fecha de publicación: 2024
Publicación seriada: Desalination
Resumen: This study examines the relationship between input conditions and the prediction of boron rejection in full-scale seawater reverse osmosis (SWRO) desalination plants using ensemble-based machine learning. While reverse osmosis is the dominant desalination technology, limited research has focused on analyzing plant performance under actual operating conditions. To address this gap, we developed and implemented machine learning algorithms to forecast boron permeability coefficient values, which are indicative of boron rejection concentrations in the permeate. Our analysis utilizes data from a SWRO desalination plant in southeast Spain, examining various input variables and their influence on the prediction of these parameters. The results demonstrate that our ensemble-based machine learning approach can predict boron permeability coefficient values with a reasonable margin of error of 1 mgL−1, as evidenced by mean average error (MAE) and mean absolute percentage error (MAPE) values of 7.93·10–8 and 11.8 %, respectively. In conclusion, an innovative application of artificial intelligence algorithms in the field of water purification under real operational conditions has been introduced, thus introducing valuable insights into the use of machine learning algorithms for forecasting boron rejection concentrations in full-scale SWRO desalination plants. The findings lay the foundation for future researches exploring automated and deep-learning methods in water purification.
URI: http://hdl.handle.net/10553/128798
ISSN: 0011-9164
DOI: 10.1016/j.desal.2023.117180
Fuente: Desalination [ISSN 0011-9164], v. 573, 117180, (marzo 2024)
Colección:Artículos
Adobe PDF (3,39 MB)
Vista completa

Citas SCOPUSTM   

7
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 17-nov-2024

Visitas

140
actualizado el 01-jun-2024

Descargas

109
actualizado el 01-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.