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H I G H L I G H T S  

• Predicting the Boron Permeability Coefficient of Seawater in a Reverse Osmosis Desalination Plant Using Machine Learning 
• Analysis of different input conditions for prediction in SWRO systems with multiple membrane elements varying conditions 
• Ensemble-based machine learning model for prediction of boron rejection permeability coefficient 
• Calculation of boron rejection concentration from boron permeability coefficient  
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A B S T R A C T   

This study examines the relationship between input conditions and the prediction of boron rejection in full-scale 
seawater reverse osmosis (SWRO) desalination plants using ensemble-based machine learning. While reverse 
osmosis is the dominant desalination technology, limited research has focused on analyzing plant performance 
under actual operating conditions. To address this gap, we developed and implemented machine learning al-
gorithms to forecast boron permeability coefficient values, which are indicative of boron rejection concentrations 
in the permeate. Our analysis utilizes data from a SWRO desalination plant in southeast Spain, examining various 
input variables and their influence on the prediction of these parameters. The results demonstrate that our 
ensemble-based machine learning approach can predict boron permeability coefficient values with a reasonable 
margin of error of 1 mgL− 1, as evidenced by mean average error (MAE) and mean absolute percentage error 
(MAPE) values of 7.93⋅10–8 and 11.8 %, respectively. In conclusion, an innovative application of artificial in-
telligence algorithms in the field of water purification under real operational conditions has been introduced, 
thus introducing valuable insights into the use of machine learning algorithms for forecasting boron rejection 
concentrations in full-scale SWRO desalination plants. The findings lay the foundation for future researches 
exploring automated and deep-learning methods in water purification.   

1. Introduction 

Water scarcity is one of the main challenges for human life and has 
stimulated the use of desalination technologies to produce water for 
different purposes. Among the available technologies, reverse osmosis 
(RO) is in the lead due to its reliability [1,2] and lower specific energy 
consumption in comparison with other technologies [3,4]. Unfortu-
nately, RO has some weak points such as loss of performance due to the 

fouling of RO membranes [5–7] and low rejection rates of some ions that 
can be toxic to humans such as boron, fluorine, etc. [8,9]. This has led to 
significant efforts being made to improve the selectivity of RO mem-
branes, trying not to penalize the production of permeate per unit of 
membrane-active surface [10,11]. Usually, the determination of ion 
concentration in the permeate (CpB) is carried out in a laboratory so it is 
not measured in real-time. This can be problematic because it is not 
known in real time how a change in operating conditions affects the ion 
permeability coefficients (Bj) and consequently the CpB. It is important to 
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develop predictive models that estimate the CpB in real time [12,13]. In 
this way, the desalination plant could be working in a proper range 
operation to meet the permeate quality criteria. It is known that even 
considering constant the coefficient B, ion rejection depends on the 
operating parameters [14]. To evaluate ion rejection, it is necessary to 
determine the variation of Bj with the operating conditions. Modeling Bj 
is a complex task, as it requires a full understanding of the membrane 
process [15]. This is difficult from a mathematical perspective as 
detailed knowledge about membrane and solution properties is needed. 
In addition to this, it is necessary to obtain a large amount of information 
in real-time from the RO system which helps to estimate the values of Bj. 
Machine learning techniques such as artificial neural network (ANN) 
based models do not require much understanding of the system and 
allow the modeling of complex and nonlinear systems [16,17]. 

1.1. Related works 

The ANN-based models have been used to predict solute rejection in 
nanofiltration (NF) and RO process, which processes are roughly similar 
in terms of transport phenomena. Bowen et al. [18] used ANNs based 
model to predict the rejection of single salts (NaCl, Na2SO2, MgCl2, and 
MgSO4) and mixtures of these salts by a spiral wound NF membrane in a 
pilot-scale plant. The input used were; the feed pressure (pf), pH, ion 
diffusivity, ion valence, and feed concentration (Cf), and the output was 
the ion rejection. The network architecture (NA) included 14 inputs, 1 
hidden layer (HL) with 12 neurons, and 4 outputs (ions rejection). The 
activation function was log-sigmoid, the training algorithm the scaled 
conjugate gradients, and the performance was measured using the mean 
square error (MSE), with an average value of 1.751⋅10− 5. Later, in other 
work using ANNs, the rejection of two salts (NaCl and MgCl2) at a usual 
concentration in seawater was evaluated by Darwish et al. [19] using 
ANNs. Three NF membranes were used (NF90, NF270, and N30F from 
Filmtec™). pf, permeate flow (Qp), and Cf were used as inputs, an HL 
with 4 neurons and one output, the same activation function as in the 
previously mentioned study, and Bayesian regularization as the training 
algorithm. An average absolute percentage deviation of up to 5 % for 
MgCl2 and up to 3 % for NaCl was obtained. 

Al-Zoubi et al. [20] studied the performance of two NF membranes 
(NF90 and NF270) in terms of solute (KCl, Na2SO4, and MgSO4) rejec-
tion using ANNs (perceptron). The predictions obtained with ANNs were 
compared with those estimated using the Spiegler-Kedem model. The 
calculated NA was formed by 3 inputs, 1 HL with 4 neurons, and 1 
output. Qp, pf, and Cf were used as inputs, and absolute deviations <8 % 
were obtained. Another work of Yangali- Quintanilla et al. [21] pro-
posed an ANN based model on a quantitative structure–activity rela-
tionship (QSAR) equation that defines an appropriate set of solute and 
membrane variables capable of representing and describing rejection. 
NF and RO membranes as flat sheets in a cross-flow cell were used to 
generate 6 simple ANN-based models (perceptron). Organic salt re-
jections were evaluated by considering the salt rejection of the mem-
branes, molecular length, equivalent width, and hydrophobicity as 
inputs, 1 HL with 2–3 neurons, and 1 output. The activation function 
used was tanh-sigmoid, the training algorithm was Levenberg- 
Marquardt, and error functions such as mean average absolute error 
(AAE), absolute percent error (MAPE), maximum absolute percent error 
(MaxAPE), and standard deviation of the error (STDE) were used for 
training, validation and prediction. Regarding the prediction, the range 
of obtained values was; AAE = 4.56–10.33, MAPE = 0.14–0.64, Max-
APE = 0.83–14.66, and = 5.32–13.29 %. 

Other works in laboratory or pilot plant scale conditions, such as 
those of Khaouane et al. [22], Murthy and Vora [23] or Libotean et al. 
[24], repeat this type of simple architectures using ANN type networks 
to obtain results with controlled conditions resulting in values of <2 %. 

Khayet et al. [25] developed predicting models (for the estimation of 
NaCl rejection and Qp) using response surface methodology (RSM) and 
ANN. A RO pilot plant was used in this study considering Cf, Tf), pf, and 
Qf as inputs. The activation function used was log-sigmoid, Levenberg- 
Marquardt as the training algorithm, and the NA was formed by the 
mentioned inputs, 2 HL with 5 and 3 neurons respectively, and 1 output. 
MSE was used as a performance function, and the coefficient of multiple 
determination (R2) concerning the performance prediction was 1. It was 
concluded that ANN provided a global model describing RO perfor-
mance for a wide range of Cf being an advantage over the RSM model 
however, ANN methodology requires a greater number of experiments 

Nomenclature 

Acronyms 
ANN Artificial neural network 
HL Hidden layer 
RO Reverse osmosis 
PV Pressure vessel 
PF Polarization factor 
SWRO Seawater reverse osmosis 
Condf Feed conductivity (μS cm-1) 
Condp Permeate conductivity (μS cm -1) 
BB Boron ion permeability coefficient (m d− 1) 
C Concentration (mg L− 1) 
D Solute diffusivity (m2 s− 1) 
EPS Average element permeate flow (m3 d− 1) 
J Flow per unit area (m3 m− 2 d− 1) 
k Mass transfer coefficient 
m Molal concentration (mol kg− 1) 
P Permeability coefficient (m d-1) 
p Pressure (Pa) 
Q Flow (m3 d− 1) 
R Flow recovery (%) 
Sm Membrane surface(m2) 
T Temperature (◦C) 
TB Rejection temperature 

TCF Temperature correction factor 
TDS Total dissolved solids (mg L− 1) 
tf Operating time factor 

Greek letters 
Δp Pressure gradient (Pa) 
η Dynamic viscosity (kg m− 1 s) 
ν Velocity (m s− 1) 
π Osmotic pressure (Pa) 
ρ Density (kg m− 3) 
σ Standard deviation 

Superscript 
0 Membrane manufacturer testing conditions 

Subscripts 
0 Initial conditions 
b Brine 
fb Feed-brine 
f Feed 
m Membrane 
p Permeate 
S Solute 
w Water  
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in comparison with RSM. 
The use of artificial intelligence applied to large-scale RO plants is 

finally coming in 2015, where Madaeni et al. [26] developed an ANN- 
based model for estimating Qp and permeate conductivity (Condp). 
Their architecture used 4 inputs (operating time (t), transmembrane 
pressure (TMP), feedwater conductivity (Condf) and Qf), 2 HL with 11 
and 5 neurons respectively and 2 outputs formed the NA. The activation 
function used was log-sigmoid and Levenberg-Marquardt as the training 
algorithm. In terms of the performance of the model, R2 values of 0.94 
and 0.99 were obtained for the estimation of Qp and Condp respectively. 
Choi et al. [27] also carried out an analysis and modeling of the long- 
term performance of a full-scale RO desalination plant. The models 
evaluated were based on ANN and tree. The NA of the ANN model had 5 
inputs, 1 HL with 10 neurons and 1 output for predicting relative pf; 
relative pressure drops (Δp), and relative Condp. Levenberg-Marquardt 
was the training algorithm and the precision of the proposed model 
was measured through the STDE and R2, both parameters were in a 
range of 0.014 and 0.065, and between 0.92, and 0.95 respectively. 

Research lines focused on ANN and backpropagation are on the rise 
today. Another example is the work proposed by Asma et al. [28], where 
the performance of seawater hybrid NF/RO desalination plant including 
permeate conductivity; permeate flow, and permeate recovery is 
analyzed under different parameters (time, feed temperature, feed 
pressure, feed conductivity, and feed flow). An ANN based on back-
propagation (Levenberg–Marquardt training algorithm) is used. The 
ANN architecture is 5–8-3 with a hyperbolic tangent transfer function in 
the HL and a linear transfer function at the output layer. Results show a 
good agreement between the prediction and the experimental data 
during the training with reasonable statistical metrics values (RMSE, 
MAE, and AARD). The coefficients of determination values for the pre-
diction of Condp, permeate flow, and recovery by ANN were 0.969, 
0.942, and 0.963, respectively. Hence, the performance of the NF/RO 
hybrid seawater desalination plant was successfully predicted using the 
ANN model. Mahadeva et al. [29] on the other hand, obtain yields with a 
regression of R2 = 99.4 % and error = 0.003 using MATLAB/Simulink 
software and an ANN network with 2 HL and 20 neurons. They use a 
short training set and divide the data into 80 train, 10 validation, and 10 
test. Once again, good yields of the prediction of these plants using ANN 
are observed. However, all these works, although they predict perfor-
mance well, are not optimized since they have laboratory conditions or a 
short training set. 

Hence, there are not many studies that consider the long-term 
operation of large-scale RO desalination plants, which is important to 
obtain models closer to the real operation. Especially when the ions 
present may be toxic and are not highly rejected by RO membranes. In 
addition, other disadvantages of not considering the long-term opera-
tion of large scales in desalination plants include the operation time 
along with the fouling and the operating parameters, since the perme-
ability coefficients could vary [30]. This can lead to uncertainty about 
the most appropriate operating regime for the plant in terms of permeate 
quality. Furthermore, the design of the AI models used in these studies is 
quite simple and not very robust, with a low number of inputs and a low 
number of hidden neurons. Deep learning methods [31] and multilay-
ered recurrent neural networks [32] have been shown to improve 
traditional neural networks and could improve the confidence of pre-
dictions obtained in realistic contexts. 

In general, artificial intelligence is being applied to desalination 
plants and it is a topic that is being heavily investigated. But not only in 
plants that use RO there are also studies in desalination using solar en-
ergy. E.g., the study proposed by Salem et al. [33], use AI regression 
models to predict the efficiency of water desalination, which depends on 
solar thermal energy. They use a wide range of regression algorithms, 
including multilayer perceptron (MLP), decision trees (DT), and 
Bayesian Ridge Regression (BRR). Obtaining ranges of Root Mean 
Square error (RMSE) values of 0.07171–8.05636 and Max Error 
0.10108–14.19858 when using independent integer variables. 

This paper introduces a pioneering contribution to the domain of 
salinity in water treatment, presenting an original and comprehensive 
approach. Unlike previous studies, as depicted in Table 1, the dataset 
utilized encompasses over 40,000 operating hours, reflecting real-scale 
operational conditions rather than laboratory, pilot plant, or small- 
scale settings. Thus, this work represents an initial step towards more 
precise future research directions. 

The second novelty lies in the utilization of advanced methodologies 
that surpass conventional techniques such as simple multilayer per-
ceptron or simple ANNs architectures, support vector machines, or de-
cision trees. Instead, a more intricate and robust architecture is 
employed in this study. 

Moreover, it should be emphasized that the estimated parameters 
differ from those measured in previous studies, rendering direct com-
parisons difficult. As a pioneering investigation, the primary objective is 
to establish an approach capable of accurately determining the boron 
permeability coefficient (BB) and providing estimations within an 
acceptable margin of error (1 mg L− 1), which corresponds to a value 
lower than 20 %. Finally, the significance of this study is underscored by 
the fact that the measurements are conducted in real-time, enabling the 
assessment of only the target parameter without real-time data on other 
potentially influential substances. This aspect is attributed to the use of 
experimental data of a full-scale SWRO desalination plant. 

Therefore, this paper presents a groundbreaking contribution to the 
water purification field by introducing and analyzing a dynamic model 
based on ANNs. This model estimates BB as boric acid in large-scale 
SWRO desalination plants, an aspect that has not been previously 
explored. The study utilizes long-term operational data from a large- 
scale SWRO desalination plant, covering over 1500 operating days 

Table 1 
Summary of related works and their conditions.   

Conditions Architecture 
(layers) 

Estimated 
parameter 

Metrics 

Bowen 
et al. 
[18] 

Pilot plant 
scale 

Simple ANN 
(14-1-12) 

NaCl, 
Na2SO2, 
MgCl2, and 
MgSO4 

MSE =
1751⋅10− 5 

Darwish 
et al. 
[19] 

Seawater 
concentration 

Simple ANN 
(4-1-4) 

MgCL2 and 
NaCl 

MAE = 5–3 % 

Al-Zoubi 
et al. 
[20] 

Laboratory Simple ANN 
(3-1-1) 
perceptron 

KCl, Na2SO4, 
and MgSO4 

Error < 8 % 

Yan. et al. 
[21] 

Laboratory Simple ANN 
models 

>50 MAE =
4,56–10,33 
and MAPE =
0,14-0,64 

Khaouane 
et al. 
[22] 

Laboratory Bidirectional 
ANN 

42 organic 
compounds 

RMSE = 5,33 

Murthy y 
Vora 
[23] 

Laboratory Simple ANN 
model 

NaCl MAE = 1–1.5 
% 

Libotean 
et al. 
[24] 

Pilot plant 
scale 

Simple ANN 
model (8-1-1) 

NaCl MAE = 0,049 
% 

Khayet 
et al. 
[25] 

Pilot plant 
scale 

ANN (4-2-1) 
multi-layer 

NaCl R2 = 1 

Madaeni 
et al. 
[26] 

Full-scale RO 
plant, (5000 h) 

ANN (4-2-2) 
multi-layer 

Qp and 
Condp 

R2 = 0,94- 
0,99 

Choi et al. 
[27] 

Full-scale RO 
desalination 
plant (16.000 
h) 

Simple ANN 
model (5-1-1) 
and Tree 

pf; relative 
pressure 
drops (Δp), 
and relative 
Cp 

R2 = 0,92- 
0,95 

Asma et al. 
[28] 

Small-scale 
NF/RO 
seawater 

ANN (5-8-3) 
multi-layer 

Qp, Condp 
and R 

RMSE =
0,969 and 
MAE = 0,963  
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and employing Toray Company’s TM820L-440 and TM820S-400 mem-
brane modules. By employing machine learning algorithms to predict 
boron permeability coefficient values in the permeate and obtain boron 
rejection concentrations, this study introduces a novel approach in the 
field. The designed stable neural network architecture provides accurate 
predictions of CpB. These findings underscore the significance of 
considering operating conditions when analyzing SWRO desalination 
plants and highlight the potential of machine learning algorithms in 
enhancing their efficiency. This study represents a significant advance-
ment towards the development of automated and deep learning methods 
for water purification, which are expected to exert a substantial impact 
on the water industry in the foreseeable future. 

2. Materials and methods 

2.1. Plant description and experimental dataset 

The plant is located in the southeast of Spain and has been in oper-
ation since 2009. The raw water is taken from 18 coastal wells with a 
depth between 50 m and 100 m. Each well with a submersible pump can 
pump 360 m3 h− 1 with a pressure of 0.27 MPa. The pre-treatment system 
of the plant consists of 10 gravity sand filters, antiscalant dosing at a 
concentration of 0.5 ppm, and 6 cartridge filters with a porosity of 5 μm. 
Additionally, the plant utilizes 11 high-pressure pumps, with 2 pumps 
kept in reserve, equipped with Pelton turbines to recover energy. The 
SWRO system comprises 9 trains, in this study, however, train 3 is not 
considered in this study due to unavailability of operating data, hence, 8 
trains were considered. 

Each train with a production capacity of approximately 7200 m3d− 1. 
Trains 2, 5, 6, and 7 are installed with TM820L-440 membranes, while 
trains 1, 4, 8, and 9 are equipped with TM820S-400 membranes. Each 
train consists of a varying number of pressure vessels (PVs): trains 2, 5, 
6, and 7 have 90 PVs, trains 1 and 4 have 80 PVs, and trains 8 and 9 have 
79 PVs [30]. 

The membrane configuration in all trains includes 7 membranes per 
PV. The main purpose of this desalination plant is drinking water pro-
duction. Table 2 provides detailed information on the membrane char-
acteristics, including test conditions specified by the manufacturer, (pf 
= 5.52 MPa), Tf = 25 ◦C, Cf = 32,000 mg L− 1, flux recovery (R) = 8 % 
and pH = 8). 

Both types of membranes feature a feed spacer thickness of 28⋅10− 3 

in. To evaluate boron rejection, 5 mg L− 1 of boron was intentionally 
added to the feedwater at a pH of 8. Table 3 shows feedwater inorganic 
composition indicating this feed boron concentration (CfB) was above 5 
mg L− 1. The conductivity of the feedwater (Condf) and permeate was 
measured using the EC 215 conductivity meter from Hanna® In-
struments. The feedwater conductivity remained relatively stable, 
around 59,600 μS cm− 1, with a pH level averaging around 7. Temper-
ature fluctuations in the feedwater for each train ranged between 18 and 
26 ◦C for both types of membrane elements. A more detailed description 
of this desalination plant and data collection can be found in a previous 
work published by one of the authors [30]. 

The operating data collected and used for the dynamic ANN 
modeling as inputs were t, pf, Qf per PV, Tp, Tb, Condf, Condp, and R see 
Table 4. 

The ANN-based model was proposed for predicting BB. From the 
operating data, the mentioned permeability coefficients were calculated 
according to the solution-diffusion model. The calculation procedure for 
determining the permeability coefficients is described in detail in a 

previously published study [30]. It should be considered that the tem-
perature correction factor (TCF) was not applied to calculate the 
experimental BB as Tb and Tp were considered as inputs in the dynamic 
ANN-based model. 

Additionally, in Table 5, an example of the data obtained in train 
number 1 can be seen. The rest of the trains work in the same way, 

Table 2 
Membrane characteristics according to the manufacturer [33].  

Membrane Product flow (m3d− 1) NaCl rejection (%) B rejection (%) 

TM820S-400  34.1  99.75  90 
TM820L-440  51.1  99.8  92  

Table 3 
Feed water inorganic composition.  

Ion Concentration (mg L− 1) 

Ca2+ 538 
Mg2+ 1603 
Na+ 12,675 
K+ 468 
HCO3

− 164 
SO4

− 3740 
NO3

− < 0.005  <0.005 
Cl− 22,586 
B  5.557 
TDS  41,778  

Table 4 
Magnitudes, units, and types of data collected and used to form the SWRO plant 
data set.  

Magnitude Units Type 

t (1) h Input 
pf (2) bar Input 
Qf (3) m3 h− 1 Input 
Permeate temperature, (Tp) (4) ◦C Input 
Brine temperature, (Tb) (5) ◦C Input 
Condf (6) μS cm− 1 Input 
Condp (7) μS cm− 1 Input 
R (8) % Input  

Table 5 
Data collected in train 1 of 8 of the SWRO plant.  

t pf Qf Tp Tb Condf Condp Qp  

73 63,3  96,413 24,9 26,8  59,800  262  42,475  
529 63,7  95,225 24,9 26,8  59,400  201  41,900  
1369 67,5  96,750 20,2 21,3  59,300  184  42,625  
1825 67,4  96,375 19,8 20,9  59,500  173  42,250  
3337 71,8  88,638 19,5 20,6  59,200  243  39,383  
3991 72,7  87,350 20,0 21,1  59,300  220  39,325  
4303 71,1  90,613 20,6 21,7  59,300  223  40,600  
4969 71,0  89,888 21,3 22,4  58,300  248  39,725  
5472 70,9  90,325 23,1 24,2  58,900  259  40,625  
6050 70,1  92,150 25,4 26,5  58,800  279  41,263  
7225 67,2  97,250 24,5 25,6  55,900  289  43,950  
7923 72,4  83,638 24,9 26,8  59,600  328  38,813  
8522 72,5  87,125 20,8 22,9  59,200  313  39,313  
9024 72,4  86,650 20,5 21,7  59,300  335  38,950  
9697 68,5  96,413 20,1 19,7  57,900  303  43,225  
10,223 69,5  93,463 19,4 18,9  58,400  309  41,813  
10,680 68,2  95,675 19,7 18,8  58,400  307  43,025  
11,207 71,0  89,875 19,8 18,7  57,900  362  40,625  
12,217 70,4  91,063 20,4 19,9  57,800  378  41,163  
13,056 69,5  92,538 20,9 20,2  57,300  440  41,850  
14,951 68,4  95,388 23,3 24,9  57,600  608  43,000  
16,151 68,4  94,625 23,2 24,3  57,500  680  42,500  
17,087 68,2  94,500 21,9 23,6  58,900  664  42,750  
20,255 72,0  87,250 19,9 20,5  56,900  722  39,380  
20,815 73,0  86,875 20,2 20,8  56,700  776  39,250  
21,600 72,8  85,875 20,3 21,1  55,700  763  38,750  
22,107 74,1  84,750 21,0 21,7  57,400  976  38,250  
23,279 72,8  87,375 24,0 25,0  58,300  1220  39,250  
23,447 73,8  84,500 24,2 25,6  58,000  1190  38,250  
23,879 67,6  97,750 24,8 25,0  58,000  948  41,000  
25,203 70,5  91,625 23,1 24,9  59,000  1057  38,375  
27,335 67,5  91,875 21,2 21,0  58,700  934  38,625  
28,081 73,5  86,125 19,5 20,2  58,000  1056  36,750  
28,777 71,5  89,375 19,5 20,2  57,600  1077  37,875  
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having a greater or lesser number of total data depending on the plant 
conditions. 

2.2. Dynamic ANN model and network architecture 

ANNs are computer systems inspired by the biological human brain. 
They work through a set of inputs used as training to learn patterns and 
predict or classify a series of new elements [34]. In this work, an 
ensemble of ANNs is used to forecast the rejection of boron as boric acid 
in a large-scale SWRO desalination plant. To get a full range of results, 
the model structure used is an ensemble of 1000 ANNs. These 1000 
ANNs were selected after performing several experiments before this 
work to find the most stable forecast conditions. The closer to 1000 
ANNs were ensembled, the more stable the results were. Also, each ANN 
contains a HL. This HL varies its number of neurons from 1 to N in each 
iteration (Fig. 1). N is defined as 5 since, as mentioned in the results 
section, from this value onwards, prediction success decreases. 

2.3. Simulations 

As explained above, the network is designed to perform an ensemble 
of 1000 individual ANNs. For the different trains of the SWRO desali-
nation plant in the experiment the Holdout method was carried out. A 
range of 70–80 % of data (17–20 samples) are used to train the system 
(except for two lines that do have not enough data) and the rest is used to 
make the predictions and test the results. 

At each iteration, each ANN changes its HL neurons from 1 to 5 and 
repeats the procedure 10 times to obtain a series of prediction values of 
BB for each line. Selecting at the end the best output of the iterations. 

From these values, the appropriate statistical parameters (Table 7) 
are obtained and the predicted value of BB is compared with the actual 
value of BB. Furthermore, the CB values are calculated using the afore-
mentioned Eq. (7). Then, these statistical parameters are compared with 
the values in the literature. 

Several simulations have been carried out to obtain the best entry 
conditions in the ANN to predict BB. These experiments are collected in 
Table 6. For this evaluation exist 10 types of conditions. The case with all 
the variables mentioned in Table 4 (t, pf, Qf per PV, Tp, Tb, Condf, Condp, 
and R) and the case with only 3 variables (Condf, Condp, and R). These 3 
variables are selected because they present a high correlation with the 
real values of BB according to the literature [30]. 

Therefore, considering the possibility of eliminating variables that 
contribute noise, variables that contribute more information to the 
classification according to the aforementioned bibliography are chosen 
as possible variables in experiments 6 to 10 in Table 6. In addition, three 
additional conditions are taken into account that is thought to provide 
added information; the boron value in the previous iteration (feedback), 
the time between experiments (time-lapse), and for the start of the 
experiment whether or not a first boron value input line was used (first 
line). The different cases that have been studied are shown in Table 6. 

2.4. Statistical parameters 

To assess the accuracy of the prediction of BB as boric acid, a set of 
statistical parameters has been employed. The selection of these pa-
rameters is based on their widespread usage in the literature, which 
enables us to compare our findings with the current state of the art. The 
most prominent among them are MSE, MAE, and MAPE. Table 7 displays 

Fig. 1. Architecture of the ANN ensemble.  
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these parameters for reference: 

2.5. Calculation of BB 

To calculate BB, transport equation based on the solution diffusion 
model was used [35]. The flux of Boron (JB) per unit area was deter-
mined using Eq. (7) as permeate flow (QP) and Boron concentration in 
the permeate (CpB) were available from the experimental data. It should 
be mentioned that CpB was estimated from 0.51⋅Condp. 

JB = BB
(
CmB − CpB

)
=

QpCpB

Sm
(7)  

where CmB is the Boron concentration (mg L− 1) on the membrane sur-
face. To estimate this parameter, it is necessary to use Eq. (8) which is 

dependent on the polarization factor (PF). This parameter in turn de-
pends on the permeate flux (Jp) and the mass transfer coefficient of 
Boron (kB) (Eq. (9)). This mass transfer coefficient can be estimated from 
the solute mass transfer coefficient (ks) from Eq. (11) [36]. This 
parameter was determined using Eqs. (12)–(20) [14]. 

CmB = Cfb− B⋅PF (8)  

PF = eJp/kB (9)  

Jp =
Qp

Sm
(10)  

kB = ks/0.97 (11)  

ks =
Dfb− sSh

dh
(12)  

Dfb− s = 6.725⋅10− 6⋅e

(

0.1546⋅10− 3⋅Cfb− B −
2513

273.15+Tfb

)

(13)  

Sh = 0.14⋅Re0.64⋅Sc0.42 (14)  

Re =
ρfb⋅vfb⋅dh

ηfb
(15)  

ρfb = 498.4⋅m+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
248400 + 752.4⋅m⋅Cfb

√
(16)  

m = 1.0069 − 2.757⋅10− 4⋅Tfb (17)  

ηfb = 1.234⋅10− 6⋅e

(

2.12⋅10− 3⋅Cfb− B −
1965

273.15+Tfb

)

(18)  

dh =
4⋅ε

2
h + (1 − ε) 8

h
(19)  

Sc =
ηfb

ρfbDfb− s
(20)  

BB =
QpCpB

TCF⋅Sm⋅
(
Cfb− B⋅PF − CpB

) (21)  

where BB is the Boron permeability coefficient (m d− 1) at 25 ◦C, Sm is the 
membrane surface of each train, dh (m) is the hydraulic diameter, Dfb-s 
the feed-brine solute diffusivity (m2 s− 1), Sh is the Sherwood number 
which correlation was taken from [14] taking into consideration the 
feed spacer geometry of the SWRO element used, Sc the Schmidt num-
ber, ρfb (kg m− 3) the feed-brine solution density, νfb the feed-brine ve-
locity (m s− 1), ηfb (kg m− 1 s− 1) the dynamic viscosity of the feed-brine 
solution, ε the porosity (0.89), h the feed spacer height. 

3. Results and discussion 

3.1. Relationship between input variables and outputs in ANN based 
model 

To improve the accuracy of the model, we have performed a selec-
tion of the most significant input variables to analyze and eliminate 
those that do not provide relevant information, as discussed in Section 
2.3 (simulations). According to the tests carried out in this work, Condp 
has the strongest correlation with the real values of BB (R2 = 0.9653). 
This is because with the temporary degradation of the membrane, the 
condp values will increase along with the BB value. In order to confirm 
this, the temporal analysis of the variables is then performed. The rest of 
the variables show a correlation lower than 0.9, suggesting a non-linear 
correlation. These types of correlations are well captured by deep 
learning algorithms. It is also observed that the second highest 

Table 6 
Evaluation of the experiments to obtain the optimal entry conditions.a  

Experiment conditions Extra conditions 

Feedback Previous time 
lapse 

First input 
line 

All inputs (1) 
t, pf, Qf, Tp, Tb, Condf, Condp, 
R 

No No No 

All inputs (2) 
t, pf, Qf, Tp, Tb, Condf, Condp, 
R 

Yes Yes Yes 

All inputs (3) 
t, pf, Qf, Tp, Tb, Condf, Condp, 
R 

No Yes Yes 

All inputs (4) 
t, pf, Qf, Tp, Tb, Condf, Condp, 
R 

Yes No Yes 

All inputs (5) 
t, pf, Qf, Tp, Tb, Condf, Condp, 
R 

Yes Yes No 

Three inputs (6) 
Condf, CondP, R 

No No No 

Three inputs (7) 
Condf, CondP, R 

Yes Yes Yes 

Three inputs (8) 
Condf, Condp, R 

No Yes Yes 

Three inputs (9) 
Condf, Condp, R 

Yes No Yes 

Three inputs (10) 
Condf, CondP, R 

Yes Yes No  

a To simulate the best input conditions, only trains 1 and 5 were used 
(TM820S-400 membrane and TM820L-440 membrane, respectively). This is 
because we are looking for a representative case to find out the best input 
conditions and then carry out the simulations of the set of trains with those 
conditions, explained in Table 6. 

Table 7 
Parameters to evaluate BB.  

Parameter Equation  

Average (Avg) 
X =

∑n
i=1xi

N 
(1)

Standard deviation (STD) 
σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i (xi–X)
2

N

√
(2)

MSE MSE =
1
n
∑n

i=1

(
yi–ŷi

)2 

yi = Observed valuesy1̂ = Predicted values 

(3)

RMSE 
RMSE =

̅̅̅
1
n

√
∑n

i=1
(
yi–ŷi

)2 (4)

MAE MAE =
1
n
∑n

i=1
|yi–ŷi|

yi = Observed valuesŷi = Predicted values 

(5)

MAPE 
MAPE =

100
n

∑n
i=1

|yi–ŷi|

yi 
yi = Actual value 
ŷi = Predicted value 

(6)
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correlation is that of BB with respect to time, which reinforces the idea 
that the rest of the variables have some kind of non-linear correlation. 
This is confirmed by the literature and the following tests [30]. Fig. 2 
shows the different correlations between the value of BB and the vari-
ables, together with their R2 coefficient. 

To further investigate the influence of the input variables on the 
prediction of BB, we have analyzed the time evolution of their values. 
Our temporal analysis reveals that Condp, Condf, and R present a 
correlational evolution of their value over time, unlike the other vari-
ables (pf, Qf, Tp, Tb), which are apparently independent of time (Fig. 3). 
This suggests that as time passes, Condp and R may be influenced by the 
membrane properties and, therefore, the values of BB are influenced by 
them too, being correlated. This analysis of the time evolution of inputs 
in SWRO plants is complicated and presents difficulty in formulating 
hypotheses. Since there is no previous literature on data from an SWRO 
plant under operating conditions over several years. 

Taking into account the relationship found in the equations of the 
literature cited in [30], and the results obtained from the temporal 
analysis and the relationship between inputs and output, we have 
selected three variables (Condp, Condf, and R) to study their influence on 
the prediction of BB and, therefore, on the CpB. These variables have 
been used as inputs in experiments 6–10 in Table 6, and we compare the 
BB prediction with the cases where all variables are used as inputs (ex-
periments 1–5 in Table 6). In Section 3.2, we present the results of this 
hypothesis and verify the validity of this approach. We conclude with a 
detailed analysis to determine the most suitable input variables to obtain 
accurate predictions of CpB at the output of the ANN network. 

3.2. Analysis of the best experiment conditions for inputs 

A set of simulations has been conducted to predict the boron 
permeability coefficient (BB) using various input conditions, as 
explained in Section 2.3 and shown in Table 6. Table 8 presents the best 
results for boron prediction, using all variables and experiment condi-
tions 1 of Table 6. As described in Section 2.2, the experiment was 
repeated with varying HL neurons from 1 to N (where N = 5), resulting 
in a lower MAE and MAPE error at N = 2. 

From this point, all simulations were performed using experiment 
condition 1, as other conditions yielded higher errors contrary to the 
hypothesis of Section 3.1 based on the linear correlations. The inputs to 
the ANN include all variables without feedback, time-lapse, or a sample 
of the previous boron line, as including these variables led to higher 
error rates, contrary to the findings in Section 3.1. Although the idea of 
using feedback and time lapses to collect data was initially considered, 
the collected data was found to have variable time intervals and limited 
significance. Moreover, the results with all variables as inputs showed 
that neural networks tend to benefit from more data, and all variables 
contain relevant information in the forecasting process, as opposed to 
the previous analysis in Section 3.1 to eliminate variables that do not 
provide information. 

3.3. SWRO desalination plant simulation 

The simulation was performed using the holdout method with the 8 
lines (8 trains of the SWRO plant), with trains 1–4 using membrane 
TM820S-400 and trains 5–8 using membrane TM820L-440. Table 9 
summarizes the results obtained for both types of membranes, including 

Fig. 2. Linear correlation between BB and the variables.  
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the averages for all 8 trains. The membrane used in trains 1–4 is more 
stable in predicting CpB, with a MAPE of 11.2 % and a standard deviation 
of 1.65 %, while the membrane used in trains 5–8 has a higher MAPE 
(12.58 %) and standard deviation (4.59 %), resulting in worse predic-
tion results for CpB. 

The best results were obtained for train 4 of membrane TM820S-400 
and train 8 of membrane TM820L-440, with an average MAPE of 8.85 % 
and 6.06 % respectively, and an average difference between actual and 
estimated CpB of 11.88 % and 6.05 % respectively. When analyzing the 
results, it is important to consider two factors: the differences between 
results on the same membrane and the differences between results of the 
two membranes. Differences in results of the same membrane can be 
attributed to two main reasons: the randomness of initial neuron weights 
and the amount of data used for training-test since more data generally 
leads to better predictions and not all trains have the same amount of 
data. 

On the other hand, differences in results between the two membranes 
are due to variations in characteristics such as flow gdp, average NaCl 
rejection percentage, maximum pressure, and active area of the mem-
brane. As a result, Boron rejection and RO are slightly different between 
the two membranes, leading to differences in prediction success. 

Due to the limited availability of data from SWRO plants under 
operating conditions, the error values obtained through simulations of 
this nature are of limited comparability. 

For instance, in previous works [19,20], the mean absolute per-
centage deviation of ion rejections predictions was between 3 % and 8 
%, when operating under controlled laboratory conditions. However, in 
the present study, where full-scale operating conditions were used, a 

mean absolute standard deviation of 11.89 % was achieved, implying 
that despite the unfavorable conditions, the model responds adequately. 
Other works [21] reported a MAPE value below 2 % under laboratory 
conditions; however, standard deviation reached levels of up to 13 %, 
this compared with the system here proposed that reaches up values of 
3.96 % on average in standard deviation, is a sign of the stability of the 
system. 

Additionally, some works [29,33] reported excellent results, with a 
success rate in predicting ions in the output of over 99 %. However, 
these models were trained under laboratory conditions, with a dataset of 
fewer than 100 samples (where 80 % were used for training and only 10 
% for the test). Therefore, although these results are very good, they 
cannot be compared to those presented in this study, where hundreds of 
data points were considered, all of them under large-scale operating 
conditions and from different trains. 

In the light of the above, the BB predictions made with the proposed 
model can be considered relatively favorable and allow to know the 
approximate value of the crucial parameters at the output, as well as to 
predict the CpB level of boron concentration at the output. The short- and 
medium-term degradation of the membrane can also be analyzed indi-
rectly. The feasibility of using the proposed model for short- and 
medium-term predictions is supported by the results presented in Fig. 4, 
which show a favorable agreement between the actual and predicted 
values of CBP. 

4. Conclusions 

A novel approach to predicting boron rejection concentrations in 

Fig. 2. (continued). 
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full-scale SWRO desalination plants using ensemble-based machine 
learning is presented in this study. While reverse osmosis is a leading 
technology in desalination, few studies have analyzed the performance 
of such plants under operating conditions. This work aims to fill this gap 
by developing and implementing machine learning algorithms for pre-
dicting boron permeability coefficient values in the permeate. The data 
analyzed comes from a reverse osmosis desalination plant in southeast 
Spain. The study seeks to analyze different types of variables and their 
weight in predicting these parameters. The results show that the system 
based on machine learning assembly can predict the boron permeability 
coefficient values with a certain margin of error, with MAE and MAPE 
values of 7.93⋅10− 8 and 11.8 % respectively, this error represents a 
deviation of approximately 0.1 mgL− 1 in CpB estimation. In contrast, a 

previous study utilized a data set obtained from an SWRO plant with 2 
types of water-filtering membranes each one with 4 trains/lines. The 
data set was subsequently analyzed to obtain the most significant values, 
which were correlated and provided more information to a neural 
network architecture that had been developed. This ANN consisted of a 
dynamic ANN model that performed a set of 1000 individual ANNs. It 
then tried to predict future values of boron concentration at the mem-
brane outlet. After the predictions, it was concluded that the inputs that 
gave the best result were pf, Qf, Tp, Tb, Condf, Condp and R. A stable 
neural network architecture was designed whose inputs resulted in 
boron concentration predictions with a MAPE reaching values of 6 % 
and an average for the best membrane of 11.20 % ± 1.65 MAPE. A 
comparative study of the two membranes and the evolution of the pre-
diction against time was carried out. The predictions of the BB made with 
the proposed model are compared with other works carried out in the 
literature and are considered favorable, taking into account that all 
studies in the literature analyze laboratory conditions and have a 
reduced number of samples, unlike the one proposed here. 

This study provides a model capable of predicting the BB value in the 
permeate, using operational variables. This makes it possible to predict 
the level of boron concentration in the permeate and therefore to know 
its evolution in the short and medium term, which facilitates the un-
derstanding of the process and can help in carrying out operations or 
substitutions in the plant. This work is novel due to the inclusion of 
artificial intelligence algorithms in the field of water purification under 
operating conditions in SWRO desalination plants. It serves as a stepping 
stone for future research in applying automatic and deep learning 
methods in water purification. 

Fig. 3. Temporal evolution of the variables during >3 years in the SWRO plant.  

Table 8 
Statistical results of the best BB prediction results are shown. The best case is 
using experiment conditions 1 in Table 6.  

Experiment conditions 1 of Table 6 (all inputs) 

No. 
Iterations 
(10) 

1 neuron 
in HL 

2 neurons 
in HL 

3 neurons 
in HL 

4 neurons 
in HL 

5 neurons 
in HL 

STD 7.70 ×
10− 3 

1.03 ×
10− 2 

1.02 ×
10− 2 

1.04 ×
10− 2 

9.80 ×
10− 3 

MSE 8.86 ×
10− 14 

5.55 ×
10− 14 

5.13 ×
10–14 

4.80 ×
10− 14 

4.82 ×
10− 14 

RMSE 2.16 ×
10− 7 

1.67 ×
10− 07 

1.72 ×
10− 07 

1.72 ×
10− 07 

1.75 ×
10− 07 

MAE 2.16 ×
10− 7 

1.66 ×
10− 07 

1.71 ×
10− 07 

1.71 ×
10− 07 

1.75 ×
10− 07 

MAPE 15.09 11.93 12.08 12.00 12.22  
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