Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/128778
Título: Area and Feature Guided Regularised Random Forest: a novel method for predictive modelling of binary phenomena. The case of illegal landfill in Canary Island
Autores/as: Quesada Ruiz, Lorenzo C. 
Rodríguez Galiano, Víctor
Zurita Milla, Raúl
Izquierdo Verdiguier, Emma
Clasificación UNESCO: 330807 Eliminación de residuos
630502 Elaboración de modelos
Palabras clave: Random Forest
Feature selection
Predictive modelling
Binary phenomena
Success rate, et al.
Fecha de publicación: 2022
Publicación seriada: International Journal of Geographical Information Science 
Resumen: This paper presents a novel method, Area and Feature Guided Regularised Random Forest (AFGRRF), applied for modelling binary geographic phenomenon (occurrence versus absence). AFGRRF is a wrapper feature-selection method based on a previous modification of Random Forest (RF), namely the Guided Regularised Random Forest (GRRF). AFGRRF produces maps that minimise the affected area without a significant difference in accuracy. For this, it tunes the GRRF hyper-parameters according to a trade of between True Positive Rate and the affected area (Success Rate). AFGRRF also addresses the ‘Rashomon effect’ or the multiplicity of good models. The proposed method was tested to model illegal landfills in Gran Canaria Island (Spain). AFGRRF performance was compared to that of other RF-based methods: (i) standard RF; (ii) Area Random Forest (ARF); (iii) Feature Random Forest (FRF); (iv) Area Feature Random Forest (AFRF) and (v) GRRF. AFGRRF predicted the smallest affected area, 19% of the island, at a similar True Positive Rate. This percentage is substantially smaller than the one predicted by RF (27.43%), ARF (26%), FRF (27.78%), AFRF (23%) and GRRF (29.67%).
URI: http://hdl.handle.net/10553/128778
ISSN: 1365-8816
DOI: 10.1080/13658816.2022.2075879
Fuente: International Journal of Geographical Information Science [1365-8816], Volume 36, Issue 12, p. 2473-2495
Colección:Artículos
Adobe PDF (3,68 MB)
Vista completa

Citas SCOPUSTM   

2
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 17-nov-2024

Visitas

86
actualizado el 16-nov-2024

Descargas

99
actualizado el 16-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.