Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/128778
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Quesada Ruiz, Lorenzo C. | en_US |
dc.contributor.author | Rodríguez Galiano, Víctor | en_US |
dc.contributor.author | Zurita Milla, Raúl | en_US |
dc.contributor.author | Izquierdo Verdiguier, Emma | en_US |
dc.date.accessioned | 2024-02-02T19:38:14Z | - |
dc.date.available | 2024-02-02T19:38:14Z | - |
dc.date.issued | 2022 | en_US |
dc.identifier.issn | 1365-8816 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/128778 | - |
dc.description.abstract | This paper presents a novel method, Area and Feature Guided Regularised Random Forest (AFGRRF), applied for modelling binary geographic phenomenon (occurrence versus absence). AFGRRF is a wrapper feature-selection method based on a previous modification of Random Forest (RF), namely the Guided Regularised Random Forest (GRRF). AFGRRF produces maps that minimise the affected area without a significant difference in accuracy. For this, it tunes the GRRF hyper-parameters according to a trade of between True Positive Rate and the affected area (Success Rate). AFGRRF also addresses the ‘Rashomon effect’ or the multiplicity of good models. The proposed method was tested to model illegal landfills in Gran Canaria Island (Spain). AFGRRF performance was compared to that of other RF-based methods: (i) standard RF; (ii) Area Random Forest (ARF); (iii) Feature Random Forest (FRF); (iv) Area Feature Random Forest (AFRF) and (v) GRRF. AFGRRF predicted the smallest affected area, 19% of the island, at a similar True Positive Rate. This percentage is substantially smaller than the one predicted by RF (27.43%), ARF (26%), FRF (27.78%), AFRF (23%) and GRRF (29.67%). | en_US |
dc.language | spa | en_US |
dc.relation.ispartof | International Journal of Geographical Information Science | en_US |
dc.source | International Journal of Geographical Information Science [1365-8816], Volume 36, Issue 12, p. 2473-2495 | en_US |
dc.subject | 330807 Eliminación de residuos | en_US |
dc.subject | 630502 Elaboración de modelos | en_US |
dc.subject.other | Random Forest | en_US |
dc.subject.other | Feature selection | en_US |
dc.subject.other | Predictive modelling | en_US |
dc.subject.other | Binary phenomena | en_US |
dc.subject.other | Success rate | en_US |
dc.subject.other | Illegal landfill | en_US |
dc.title | Area and Feature Guided Regularised Random Forest: a novel method for predictive modelling of binary phenomena. The case of illegal landfill in Canary Island | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1080/13658816.2022.2075879 | en_US |
dc.identifier.scopus | 2-s2.0-85131662848 | - |
dc.identifier.isi | WOS:000808497100001 | - |
dc.contributor.orcid | 0000-0001-7886-5678 | - |
dc.contributor.orcid | 0000-0002-5422-8305 | - |
dc.contributor.orcid | 0000-0002-1769-6310 | - |
dc.contributor.orcid | 0000-0003-2179-1262 | - |
dc.description.lastpage | 2495 | en_US |
dc.identifier.issue | 12 | - |
dc.description.firstpage | 2473 | en_US |
dc.investigacion | Artes y Humanidades | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-HUM | en_US |
dc.description.sjr | 1,315 | |
dc.description.jcr | 5,7 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.ssci | SSCI | |
dc.description.miaricds | 11,0 | |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | Departamento de Geografía | - |
crisitem.author.orcid | https://orcid.org/0000-0001-7886-5678 | - |
crisitem.author.fullName | Quesada Ruiz, Lorenzo C. | - |
Colección: | Artículos |
Citas SCOPUSTM
4
actualizado el 30-mar-2025
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 30-mar-2025
Visitas
86
actualizado el 16-nov-2024
Descargas
99
actualizado el 16-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.