
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgis20

International Journal of Geographical Information
Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tgis20

Area and Feature Guided Regularised Random
Forest: a novel method for predictive modelling of
binary phenomena. The case of illegal landfill in
Canary Island

Lorenzo Carlos Quesada-Ruiz, Victor Francisco Rodriguez-Galiano, Raúl
Zurita-Milla & Emma Izquierdo-Verdiguier

To cite this article: Lorenzo Carlos Quesada-Ruiz, Victor Francisco Rodriguez-Galiano, Raúl
Zurita-Milla & Emma Izquierdo-Verdiguier (2022) Area and Feature Guided Regularised
Random Forest: a novel method for predictive modelling of binary phenomena. The case of
illegal landfill in Canary Island, International Journal of Geographical Information Science,
36:12, 2473-2495, DOI: 10.1080/13658816.2022.2075879

To link to this article:  https://doi.org/10.1080/13658816.2022.2075879

View supplementary material 

Published online: 09 Jun 2022.

Submit your article to this journal 

Article views: 283

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tgis20
https://www.tandfonline.com/loi/tgis20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/13658816.2022.2075879
https://doi.org/10.1080/13658816.2022.2075879
https://www.tandfonline.com/doi/suppl/10.1080/13658816.2022.2075879
https://www.tandfonline.com/doi/suppl/10.1080/13658816.2022.2075879
https://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/13658816.2022.2075879
https://www.tandfonline.com/doi/mlt/10.1080/13658816.2022.2075879
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2022.2075879&domain=pdf&date_stamp=09 Jun 2022
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2022.2075879&domain=pdf&date_stamp=09 Jun 2022


RESEARCH ARTICLE

Area and Feature Guided Regularised Random Forest:
a novel method for predictive modelling of binary
phenomena. The case of illegal landfill in Canary Island

Lorenzo Carlos Quesada-Ruiza , Victor Francisco Rodriguez-Galianoa , Ra�ul
Zurita-Millab and Emma Izquierdo-Verdiguierc

aDepartment of Physical Geography and Regional Geographical Analysis, University of Seville, Seville,
Spain; bFaculty of Geoinformation Science and Earth Observation (ITC), University of Twente,
Enschede, The Netherlands; cInstitute of Geomatics, University of Natural Resources and Life
Sciences, Vienna (BOKU), Vienna, Austria

ABSTRACT
This paper presents a novel method, Area and Feature Guided
Regularised Random Forest (AFGRRF), applied for modelling binary
geographic phenomenon (occurrence versus absence). AFGRRF is a
wrapper feature-selection method based on a previous modification
of Random Forest (RF), namely the Guided Regularised Random
Forest (GRRF). AFGRRF produces maps that minimise the affected
area without a significant difference in accuracy. For this, it tunes
the GRRF hyper-parameters according to a trade of between True
Positive Rate and the affected area (Success Rate). AFGRRF also
addresses the ‘Rashomon effect’ or the multiplicity of good models.
The proposed method was tested to model illegal landfills in Gran
Canaria Island (Spain). AFGRRF performance was compared to that
of other RF-based methods: (i) standard RF; (ii) Area Random Forest
(ARF); (iii) Feature Random Forest (FRF); (iv) Area Feature Random
Forest (AFRF) and (v) GRRF. AFGRRF predicted the smallest affected
area, 19% of the island, at a similar True Positive Rate. This percent-
age is substantially smaller than the one predicted by RF (27.43%),
ARF (26%), FRF (27.78%), AFRF (23%) and GRRF (29.67%).
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1. Introduction

Predictive modelling algorithms identify and learn patterns between a target feature
and other independent features from a given subset of training samples. Hence, pre-
dictive modelling enables estimation of said target feature’s behaviour using inde-
pendent features, regardless of when it occurred (past, present or future), whereas
forecasting makes projections into the future (Breiman 2001a, Quesada-Ruiz et al.
2019a). Predictive modelling has become an important tool for mapping the distribu-
tion of multiple geographical phenomena in Earth sciences (Soares and Pereira 2007,
Dahal et al. 2008, Tehrany et al. 2013). These phenomena are often binary in nature,
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i.e. occurrence: the absence or presence of the phenomenon (Breslow and Cain 1988,
Schill et al. 1993, Carranza et al. 2008).

Following Rodriguez-Galiano et al. (2012), an occurrence map may be considered
appropriate, in addition to being accurate, when: (a) the spatial distribution of the phe-
nomenon is consistent with respect to the most important explanatory features; (b) it is
replicable, achieving a certain stability in the predicted values and (c) the phenomenon
is not over or underestimated. Ignoring this latter aspect may lead to cost overruns for
many tasks, especially when we use GIS methods applied to binary mapping. Examples
of this include: landslide prevention (Dahal et al. 2008, Harris and Grunsky 2015, Hong
et al. 2017, Chen et al. 2019), where potentially affected areas must be defined to effi-
ciently locate slope-stabilisation actions; flood prevention (Tehrany et al. 2013), requiring
the construction of containment walls against possible floods; ecosystem conservation
(Poulos et al. 2016, Huettmann et al. 2018, Zhang et al. 2019), where estimation of the
presence and/or absence of the various habitats of an ecosystem helps to facilitate their
respective management; and infectious disease (Cecchi et al. 2009, Bhunia et al. 2012,
Iftimi et al. 2015) and agricultural pest control (Wittmann et al. 2001, Porretta et al.
2013, Kumar et al. 2016), which require locating the area that contributes to the spread
of a given pathogen, as well as predicting the potential area that might be affected in
future. In this sense, the concept of potentially affected area (hereafter affected area) is
central to the predictive modelling of binary phenomena and refers to areas that may
suffer or withstand potential damage or risk (i.e. areas with non-zero probability).

The accuracy of predictive modelling is largely grounded on the classification method
and its optimisation using the training data (Foody 2004, Visser and Nijs 2006). Methods
for predictive modelling have different abilities to learn patterns, sometimes needing a
specific statistical distribution in the features (i.e. normality) (Rodriguez-Galiano et al.
2014, Leuenberger and Kanevski 2015, Arabameri et al. 2019). However, other aspects
that have traditionally received less attention, such as the metrics for assessing perform-
ance or Feature Selection, are also important, and might have an impact on both the
area and the spatial distribution (Rodriguez-Galiano et al. 2018). Predictive models are
typically built using large sets of explanatory features (e.g. information about geology,
biology or socioeconomic factors, etc.). However, even if the number of samples is not-
ably larger than the number of features, high feature space dimensionality can over-
whelm the method’s learning capacity (the curse of dimensionality; Chen 2009). Also,
selecting a large number of features would lead to models that are difficult to both
interpret and replicate. Thus, dimensionality reduction is often needed. Dimensionality
reduction is primarily achieved by Feature Extraction or Feature Selection. Feature
extraction methods reduce data down to a smaller representative set, projecting these
into the most relevant directions of a lower feature space, as in the case of the Principal
Component Analysis method (Lucas and Jauzein 2008, Menci�o and Mas-Pla 2008, Canela
et al. 2011). Conversely, feature selection methods do not modify the features of the ori-
ginal data; rather, they select a reduced yet meaningful feature subset, improving both
interpretability and the accuracy of the model (Blum and Langley 1997, Dash and Liu
1997, Guyon and Elisseeff 2003). Some negative effects could thus be averted using fea-
ture selection, such as (Rodriguez-Galiano et al. 2018): (i) model overfitting; (ii) limitation
of the model’s interpretability due to high complexity; (iii) loss of generalisation capacity
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and (iv) a significant increase in computational time. A controversial aspect of feature
selection is the multiplicity of good models, which is also common in statistical algo-
rithms, such as multiple regression or logistic regression. Different feature subsets might
share good and similar accuracy, thus resulting in a non-unique solution or physical
model explaining a phenomenon (Rashomon effect, Breiman 2001b).

Among the different approaches for feature selection, filters, embedded and wrapper
methods stand out (Hall and Smith 1997, Tuv 2009). Filters select features regardless of
the predictive model and accuracy of predictions (e.g. linear correlation) (Guyon and
Elisseeff 2003, Dixon 2005). Current approaches include embedded methods, which are
algorithms that include an internal estimate of a feature’s importance based on different
metrics, such as gain or mean decrease in accuracy. Some examples of this algorithm
type are decision trees or Random Forest (RF). However, embedded methods only pro-
vide a ranking of a feature’s importance and do not determine the optimal number of
features (Bazi and Melgani 2006, Tuv 2009, Pal and Foody 2010, Rodriguez-Galiano et al.
2012). Finally, wrapper-based approaches select an optimal subset of features, repeat-
edly and automatically training the model with different subsets (Guyon and Elisseeff
2003). The design of the wrapper algorithm for feature selection requires three compo-
nents: a predictive algorithm (i.e. RF, support vector machines or neural networks), a
method for searching in the feature space (i.e. forward or backward deterministic search,
exhaustive search, genetic algorithms etc.) and a metric for evaluating performance (i.e.
RMSE in the case of regression, Receiver Operating Curve (ROC) or overall accuracy in
the case of classification) (Rodriguez-Galiano et al. 2018). Wrappers are thus very compu-
tationally intense algorithms (Hall and Smith 1997, Navin Lal et al. 2006). RF-based algo-
rithms are well-suited to building wrappers because of their low sensitivity to
hyperparameter tuning and their robustness and speed from a computational stand-
point (Breiman 2001a). Various RF-based wrapper methods have been proposed in Earth
sciences, using either sequential search (Rodriguez-Galiano et al. 2018) or exhaustive
grid search, such as Guided Regularised Random Forest (GRRF) (Deng and Runger 2013,
Izquierdo-Verdiguier and Zurita-Milla 2020). This paper presents the Area and Feature
Constrained Random Forest (AFGRRF) binary classification method. The proposed
method is a new machine learning feature selection method that can also be used for
predictive modelling. Other specific objectives include: (i) assessing the application of
different Random Forest based algorithms to binary mapping; (ii) reducing the affected
area and therefore the environmental management costs for binary phenomena.

2. Afgrrf classification method

2.1. Modelling background

AFGRRF is a modification of the GRRF algorithm that prevents an overestimation of the
affected area by optimising both the True Positive Rate (TPR) and the affected area via
Success Rate (SR) application (see Section 2.3). AFGRRF may be a novel way to address
the Rashomon effect, by selecting the feature subset from among multiple good pre-
dictive models that leads to a smaller affected area. The proposed method is tested in a
case study to predict the possible distribution of illegal landfills (ILs) on Gran Canaria
island in Spain. Gran Canaria is an island within the Canary archipelago, which are an
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outermost region of the European Union and a Spanish autonomous region. Gran
Canaria has an area of 1560 km2 and is the second most populated among the islands
(845,000 residents) after Tenerife (891,000 residents) (INE 2016a). The population of Gran
Canaria is mainly located in coastal areas, while the interior is less populated. The
Canary Islands rank eight within the Spain’s gross domestic product. According to Cruz
et al. (2011), the major driver of economic activity on Gran Canaria is the tourism, which
has led to a strong boost in the construction sector. Tourism on Gran Canaria is funda-
mentally beach-related, being concentrated in the South of the island. Around 4.2 mil-
lion people visited the island in 2016 (INE 2016b). The Canary Islands comprises a small
and fragmented territory where space is a lack of resource, limiting and hampering terri-
torial planning and land-use management. Hence, the creation of waste-management
infrastructures (GOBCAN 2015, 2008) and the containment of ILs is an important chal-
lenge (GOBCAN 2015 2008, Quesada-Ruiz et al. 2019a, 2019b). IL are an environmental
management problem for the Canary Islands as in many countries, harming the environ-
ment, human health and local economies (Quesada-Ruiz et al. 2019b).

The primary impacts of IL are local landscape deterioration, air pollution, aquifer pollu-
tion and increased risk to human health (Bridges et al. 2000, Monteiro Santos et al. 2006,
Ichinose and Yamamoto 2011). The cost associated with locating and remediating IL has
been estimated per year, for example by (i) the Environment Agency of the United
Kingdom, at 120–175 million euros in the UK; (ii) The Queensland Government
(Australia), at 4 million euros (EUR 420 per tonne) (Glanville and Chang 2015); (iii) The
Pennsylvania Department of Transportation in the United States, with an annual tax cost
for waste clean-up of approximately 8.6 million euros (EUR 710 per tonne) (PPRC 2016).
Moreover, waste management on the Canary Islands is more challenging than in other
places due to a lack of waste facilities (Quesada-Ruiz et al. 2018). Gran Canaria has experi-
enced an increase of 317.7 ha in areas affected by IL between 2000 and 2012 due to
urban sprawl and the housing bubble (Quesada-Ruiz et al. 2019a). Previous studies have
identified ‘construction and demolition waste’ as the most abundant IL typology in Gran
Canaria (Quesada-Ruiz et al. 2018). Additionally, the lack of dissuasive measures in more
than 95% of IL cases reflects the urgent need for monitoring and prevention policies
(Quesada-Ruiz et al. 2018). Hence, an accurate delimitation of IL-affected areas would
reduce control and monitoring costs, supporting the implementation of deterrence meas-
ures such as environmental control patrols or installation of video cameras and posters,
optimising and delimiting areas where prior intervention was implemented. On the other
hand, it could help to local government to create citizen participation programs, encour-
aging the prevention of IL by the citizen participation and increasing their opportunities
to utilise waste treatment infrastructures, with the objective of meliorate waste collection
process and environmental education policies in those areas (Quesada-Ruiz et al. 2018).

This case study was selected because ILs are clearly binary in nature, i.e. they either
exist or do not exist. Hence, they are suitable to test the applicability of the proposed
method. Moreover, ILs represent a problem that requires significant economical resour-
ces and manpower from local authorities in order to control and manage them. Thus,
further optimisation in modelling them helps to reduce the environmental management
costs (Ichinose and Yamamoto 2011, Glanville and Chang 2015), which are mainly waste
disposal and site remediation, and surveillance costs of landfilling (Tasaki et al. 2007).
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2.2. Modelling principles

AFGRRF is a new algorithm that can be applied in the GIS framework for selecting fea-
ture subsets for mapping binary phenomena, applied in this case to predictive model-
ling of ILs. AFGRRF carries out a regularisation and an exhaustive grid search identical
to the GRRF method (Deng and Runger 2013, Izquierdo-Verdiguier and Zurita-Milla
2018, 2020). AFGRRF generate multiple models based on different feature subsets spa-
tially related with the occurrence of IL according to the 100 possible combinations of
the gamma and lambda values (Figure 1), being their corresponding values between
0.1 and 1 by intervals of 0.1. AFGRRF trains multiple soft classification models with RF
using the different feature subsets generated from the Guided Grid search regularisa-
tion. Each soft map built from different feature subsets is reclassified iteratively based
on the SR. The results of SR can be shown in a graph where the TPR for different IL
affected area percentages is represented (see Figure 7). The TPR (true positives/(true
positivesþ false negatives)) is computed by finding the binary class probability mem-
bership threshold values that split the map in different affected areal quantiles. The
TPR value is computed for each map reclassified as affected and unaffected by IL
using an independent test. The model that is finally selected by AFGRRF is the one
that is obtained from the feature subset that leads to the minimum IL affected area at
a TPR equal to or greater than 90%. This TPR reference value can also be adjusted and
modified according to the needs. Therefore, AFGRRF is based on optimising SR and
minimising the IL potential affected area, serving as an alternative to traditional wrap-
pers, which are based on overall accuracy. In that sense, the method proposed use a
widely feature subset of possible features related to the ILs problem, such as distance
to coast or distance to industrial areas, and selected the features or possible combina-
tions of features according to their spatial distribution and relation with ILs occur-
rence. Hence, the method tries to map the minimal affected areas of ILs in a most
accurate way, considering the ILs sample distribution, for reducing the cost of surveil-
lance, recovery and restauration of the new possible potential affected areas. AFGRRF
pseudocode could be summarised as follows:

1. Train a RF model.
2. Obtain the embedded RF importance.
3. Guided Grid search regularisation

a. Initialise an empty subset of selected features and a threshold gain (G� ¼ 0)
b. Fix the values of k and c to calculate a.
c. Computation of GGRRF

d. If, GGRRF (xj,�) > G� the feature j is selected and the threshold gain is updated
to the GRRF gain. Otherwise, the feature is not selected.

4. Multiple soft RF models are built from the various feature subsets.
5. Feature subset selection based on SR

a. Each soft map is reclassified into multiple binary hard maps considering dif-
ferent percentages of affected area (pixel quantiles)

b. TPR is computed for all binary maps at increasing areal percentages for each
feature subset.

6. Model selection based on a trade-off between TPR and minimal area from SR.
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2.3. Accuracy assessment metrics

Besides the wrapper’s general performance metrics (overall accuracy or Kappa), other
metrics are also used for binary classification, such as: the percentage of true positives

Figure 1. Area Feature Guide Regularised Random Forest (AFGRRF) flowchart. AFGRRF is a wrapper
feature-selection method based on a modification of Guide Regularised Random Forest (GRRF),
applied to the mapping of binary geographic phenomenon (occurrence versus absence) and exem-
plified in the case of illegal landfills (IL) occurrence mapping. AFGRRF trains multiple soft classifica-
tion models using the different feature subsets (i.e. distance to coast line, communications routes
density, industrial activity index, etc.) generated from the guided grid search regularisation. AFGRRF
tunes the hyper-parameters of the GRRF for selecting a feature subset spatially related with the IL
occurrence according to a trade of between True Positive Rate (proportion of ILs that are correctly
classified over the total number of IL;TPR) and the IL affected area (Success Rate). The model
selected is the one that leads to the minimum affected area by ILs at a TPR equal to or greater
than 90%, producing maps that minimise the affected area without a significant difference in
accuracy and allowing the cost reduction of environmental management actions.

2478 L. C. QUESADA-RUIZ ET AL.



and true negatives, and the percentage of false positives and false negatives (Fawcett
2006, Powers 2007). The true positives and true negatives represent the number of
successes between the predicted values and real values for locations where a phe-
nomenon is present and absent, respectively. The false positives and false negatives
measure the percentage of errors between the predicted values and real values for
locations where a phenomenon is present and absent, respectively. A good model will
thus be one that contains a high percentage of true positives and true negatives and
a low percentage of false positives and false negatives. Therefore, analysing false posi-
tives to avoid overestimations is just as important as analysing false negatives to avoid
underestimations. However, none of these metrics take into consideration both the
accuracy of the classifications and the extent of the area affected by a phenomenon.
Binary maps, such as the occurrence of ILs, might be improved from the standpoint of
economic cost of remediation and monitoring, if feature selection was optimised using
metrics that consider both the accuracy and the extent of the affected area, such as
the success rate (Chung and Fabbri 1999).

SR represents the TPR for binary predictive maps with increasing affected area
(Chung and Fabbri 1999). The SR is represented in a graph with the TPR on the y axis
and different affected area percentage on the x axis (see Figure 7). The maps for
increasing areal percentages are computed by reclassifying taking into consideration the
classification probability threshold values at different quantiles. The TPR is computed for
each map using an independent test. This way, a map at a good accurate level (TPR)
that minimises the affected area can be chosen when success rate function converges.

3. Experimental validation

3.1. Experimental data

An IL database for GC (Figure 2) was used for the experimental design. It was generated
by interpreting digital orthophotos for the years 2012 and 2015 and through comple-
mentary field work in which 387 potential locations were visited (Quesada-Ruiz et al.
2018). 286 IL locations were obtained after filtering out IL that were less than two years
old and with an area smaller than 2000m2 with a view to rejecting temporary and small
dump sites (Quesada-Ruiz et al. 2018). Information on socioeconomic aspects obtained
from the Spanish National Institute of Statistics (e.g. per capita income, population,
industrial and tourism activity indices), as well as geomorphology was obtained for the
study area from Spanish National Institute of Geography. After preliminary process, 117
features (see supplementary material: Table 1a and Table 1b) that could be linked to IL
occurrence were derived from this information (Biotto et al. 2009, Alexakis and Sarris
2014, Quesada-Ruiz et al. 2019b), such as population size and density, per capita
income, industrial and touristic activity indices, elevation and slope, etc. New features
were extracted from this initial feature set using different GIS analysis procedures (Şener
et al. 2011, Demesouka et al. 2014, Uyan 2014, Akbari and Rajabi 2017): interpolating
socioeconomic information aggregated by population centres; considering the calcula-
tion of Euclidean distance between the IL location and elements of interest, such as
infrastructure, equipment, population centres, coast, land use etc. ( Biotto et al. 2009,
Tasaki et al. 2007) computing kernel densities of elements of interest, such as
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communication routes or buildings, and other distance-based search functions for differ-
ent radio (250m, 500m, 1500m) (Silverman 1986). Additionally, the Normalised
Difference Vegetation Index (NDVI) (Silvestri and Omri 2008) was obtained from a SPOT-
5 summer image for 31st August with 11% of cloud coverage and 10m of spatial reso-
lution. The primary features were rasterised, standardised and resampled at a spatial
resolution of 10m. Table 1 shows the main features used in the experimental design
grouped by typology. Following Carranza et al. 2008, the database was completed by
including no-IL locations (i.e. places free of IL) to distinguish areas of negative IL occur-
rence, carrying out a stratified random sampling (Quesada-Ruiz et al. 2018). The negative
and positive IL occurrence locations were coded as 0 s and 1 s, respectively, with an
overall result of 286 negative samples and 286 positive samples. All feature values were
obtained for both negative and positive IL locations.

3.2. Experimental design

The performance of AFGRRF was compared to a baseline composed of five different
RF methods: (i) Random Forest (RF); (ii) Area Random Forest (ARF); (iii) Feature
Random Forest (FRF); (iv) Area Feature Random Forest (AFRF) and (v) GRRF. The hard
classification methods (RF, FRF and GRRF) produce categorical maps, considering by
default an arbitrary threshold value of 0.5 in the class conditional probability. The soft
classification methods (ARF, AFRF and AFGRRF), which predict a class conditional prob-
ability, were assessed in terms of the smallest affected area at a TPR equal or higher
than 90%. In this sense, the soft classification methods estimate the class conditional
probabilities and after perform classification based on estimated probabilities. Each
method used 500 trees and default mtry parametrisation (square root of the number

Figure 2. Study area.
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of features) to ensure the stability of the results. RF was an embedded method with-
out feature selection to generate a hard classification model. FRF was a wrapper for
feature selection that used RF embedded importance and a forward sequential search.
Forward sequential search starts from the empty feature space and adds by steps the
most important features until the value of a given performance metric decreases
(Rodriguez-Galiano et al. 2018). Instead of a sequential search, GRRF was a wrapper
that used a regularisation based on a grid search. In this sense, the GRRF model used
different gamma and lambda values to obtain multiple feature subsets, enabling us to
obtain multiple hard classification models and choose the one with the highest overall
accuracy. On the other hand, ARF, AFR and AFGRRF used the same procedure as RF,
FRF and GRRF, respectively, to obtain soft classification models. Nevertheless, ARF, AFR
and AFGRRF maps are derived from the SR function, by reclassifying iteratively the
class-conditional probabilities map for different affected area percentages (Figure 3)
and choosing the best map for every method as that with the smallest affected area
at a TPR higher than 90% threshold.

Three subsets were generated from the initial IL database to train and assess the
method’s performance: training (60%), test 1 (20%) and test 2 (20%) (Ng 2018). We
used this percentage in order to maintain a reasonable number of test samples. Test 1
was used as an internal validation for GRRF and AFGRRF, and test 2 to compare GRRF
and AFGRRF with other RF-based methods. The McNemar test was applied between
the best map generated by each method (ARF, AFRF and AFGRRF) (Foody 2004) to
evaluate whether the differences between model accuracies were significant. It should

Table 1. Features used in the experimental design, grouped by typology.
Feature typology Units

Socioeconomic
Population density km�2

Mining and extraction activity index %
Industrial activity index %
Distance
Distance to pit zones m
Distance to transport infrastructure m
Distance to pit zones with different kernels m
Distance to transport infrastructures m
Distance to element of interest m
Distance to educational equipment m
Distance to coast m
Distance to protected areas m
Distance to cultural equipment m
Distance to agricultural areas m
Visibility
Visibility from the coastline Unitless
Physiographic
Slope %
Altitude m
NDVI index Unitless
Density
Buildings density km�2

Land use transitions density from 1990 to 2000 km�2

Land use transition density from 1990 to 2012 km�2

Impervious cover transitions density from 1990 to 2012 km�2

Greenhouses density km�2

Communication routes density km�2
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be noted that, in this case the interpretation of the McNemar test is backwards when
compared to traditional studies on the evaluation of new classifiers, where it expected
that the algorithm significantly outperforms a baseline. We therefore formulated two

Figure 3. Flowchart with the Random Forest (RF) based methods used in this study to benchmark
the proposed Area and Feature Guided Regularised Random Forest (AFGRRF). The performance of
our proposed method was compared to (i) standard RF; (ii) Area Random Forest (ARF); (iii) Feature
Random Forest (FRF); (iv) Area Feature Random Forest (AFRF) and (v) GRRF. The hard classification
methods (RF, FRF and GRRF) produce categorical maps, considering by default an arbitrary thresh-
old value of 0.5 in the class conditional probability. The soft classification methods (ARF, AFRF and
AFGRRF), which predict a class conditional probability, were assessed in terms of the smallest
affected area at a true positive rate equal or higher than 90%.
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hypotheses: H0) the models induced significant changes in the responses, i.e. the
changes seen in the sampling were not due to chance; and H1) the models did not
induce significant changes in the responses, i.e. the changes observed in the sampling
were due to chance. Results with statistical confidence above 95% were considered.
Values lower than 1.96 in the McNemar test would imply that the maps are not signifi-
cantly different (Foody, 2004), thus rejecting H0.

4. Experimental results

The GRRF and AFGRRF methods (Table 2) were used to build 100 models (all possible
combinations between lambda and gamma values). The most accurate GRRF model
obtained lambda and gamma values of 1 and 0.3, respectively, with an overall accur-
acy of 94.59%. The best AFGRRF model obtained lambda and gamma values of 0.9
and 0.2, respectively, with an overall accuracy of 93.62%. Models with higher lambda
values and lower gamma values outperformed the rest (Figures 4(B,C)). Nevertheless,
exclusively considering overall accuracy did not minimise the affected area. In this
sense, GRRF and AFGRRF estimated an affected area of 29.67% (462.80 km2) and
19.00% (296.40 km2), respectively. Thus, AFGRRF reduces the affected area by
166.4 km2 while accuracy is only reduced by 3.52% when compared to the GRRF
method. The RF, ARF, FRF and AFRF methods obtained 91.49%, 86.67%, 92.85% and
89.28% of overall accuracy, and affected areas of 27.43% (427.90 km2), 26.00%
(405.60 km2), 27.78% (436.20 km2) and 23.00% (358.80 km2), respectively (Table 3). This
means that the AFGRRF method reduced the affected area by 131.5 km2, 109.2 km2,
139.8 km2 and 62.4 km2 compared to the other methods (see Table 3). Therefore, con-
sidering a SR above 90%, AFGRRF reduced the affected area without drastically
decreasing overall accuracy compared to GRRF. Furthermore, the differences between
models were subtle according to the spatial distribution of values on the maps (Figure
5). Furthermore, as we can see in Figure 5, the spatial distribution of the misclassified
sites are similar for the hard and soft models even when the threshold condition was
a SR above 90%. Therefore, the results showed a significant reduction in affected areas
for the AFGRRF method without a significant impact on performance, which may
improve management and reduces the costs associated to environmental monitoring
and protection activities.

The McNemar test revealed no significant differences between models (see supple-
mentary material, Table 2). The map produced using the AFGGRF method was signifi-
cantly similar to those methods at a higher accuracy level (RF, FRF and GRRF). In this
sense, a subtle decrease in accuracy could lead to a reduction in the affected area. It
should be noted that, McNemar is interpreted differently in this case study. This test is
commonly used to know whether a proposed method outperforms a reference
method. This is a statistically significant increase in accuracy. However, in this case,
the objective was to test whether AFGRRF, a wrapper that selects a subset of features
that minimise the affected area, has a similar performance. This is a non-statistically
significant decrease in accuracy. ARF was the only statistically different method; it was
less accurate than the rest and less capable in reducing the affected area without a
significant decrease in the accuracy level (see Table 3).
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For this study, where embedded and wrapper feature selection was applied, the
selected features differed between methods in terms of number and typology
(Table 4). The RF and AFR methods considered all features, while FRF and ARF

Figure 4. AFGRRF models for lambda and gamma: (a) Number of features selected; (b) Potential
affected area for 90% success rate; (c) Overall accuracy.
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Table 3. Overall results.
Method Minimum affected area (%) Minimum affected area (km2) Overall accuracy Features selected

RF 27.43 427.9 91.49 113
ARFa 26 405.6 86.67 113
FRF 27.78 436.2 92.85 7
AFRCa 23 358.8 89.28 7
GRRF 29.67 462.8 94.59 11
AFGRRFa 19 296.4 93.62 12
aMinimum affected area for success rate greater than 90%.

Table 2. List of acronyms.
AFGRRF Area Feature Guide Regularised Random Forest IL Illegal Landfills
AFRF Area Feature Random Forest RF Random Forest
ARF Area Random Forest ROC Receiver Operating Curve
FRF Feature Random Forest SR Success rate
GRRF Guide Regularised Random Forest TPR True Positive Rate

Figure 5. Map of illegal landfill potential occurrence for hard methods (RF: Random Forest; FRF:
Feature Random Forest; GRRF: Guide Regularised Random Forest) and reclassified soft methods
(ARF: Area Random Forest; AFRF: Area Feature Random Forest; AFGRRF: Area Feature Guide
Regularised Random Forest).
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methods selected seven features: mining and extraction activity index, distance to pit
zones, distance to transport infrastructures, land use transitions density from 1990 to
2000, land use transition density from 1990 to 2012, impervious cover transitions dens-
ity from 1990 to 2012 and greenhouses density (Quesada-Ruiz et al. 2018). The GRRF
method selected eleven features: communication routes density, distance to pit zones
with different kernels, distance to transport infrastructures, distance to element of
interest, distance to educational equipment, distance to coast, visibility from the coast-
line (Gorr and Kurkand 2020) and population density. Finally, the AFGRRF method
selected twelve features: buildings density, distance to transport infrastructures, dis-
tance to protected areas, distance to pit zones, distance to coast, distance to agricul-
tural areas, distance to cultural equipment, slope, altitude, industrial activity index and
population density. It should be noted that the affected area was larger for smaller
feature subsets in AFGRRF (Figure 4).

Despite the selected features being different among methods, all of the methods
considered proximity to the coast, agricultural areas, pit zones and transport infrastruc-
tures as important for IL occurrence, as in previous studies (Quesada-Ruiz et al. 2018,
2019b). Physiographic features were also particularly relevant, likely due to the rugged
terrain of the island, especially for the proposed method, as shown by the Gini index
values for the selected features (see supplementary material, Figure 1). This explains
the visual similarities between the hard and soft maps (see Figures 6 and 7). The map
in Figure 6(b) has a distinctive appearance because it takes into consideration the
‘population density’ feature. Feature selection-based methods obtained higher prob-
ability values for IL (Figures 6(b,c)). Figure 5 shows how the methods without feature
selection (RF and ARF) produced coarser maps, distinguishing the general patterns in
affected areas, but unable to identify finer patterns further inland. In contrast, when
feature selection was carried out (FRF, ARF, GRRF and AFGRRF) new affected areas
were revealed, producing maps with finer spatial detail, especially in the case of GRRF
and AFGRRF. Furthermore, methods that permit application of SR enabled spurious
affected areas with lower probability to be filtered out (see Figures 6 and 7).

Table 4. Feature selected by Random Forest (RF), Area Random Forest (ARF), Feature Random
Forest (FRF), Area Feature Random Forest (AFRF), Guide Regularised Random Forest (GRRF), Area
Feature Guide Regularised Random Forest (AFGRRF).
RF ARF FRF AFRF GRRF AFGRRF

Whole feature space Mining and extraction activity index Distance to coast
Distance to pit zones Slope
Distance to transport infrastructures Distance to pit zones with

different kernels
Land use transitions density from 1990
to 2000

Distance to element of interest

Land use transition density from 1990
to 2012

Distance to educational equipment

Impervious cover transitions density
from 1990 to 2012

Distance to transport infrastructures

Greenhouses density Visibility from the coastline
Population density
Industrial activity index
Communication routes density
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5. Discussion

A majority of the studies focused on IL modelling applying weighted methods without
feature extraction or feature selection, despite the accuracy of predictive modelling
depending on feature selection, among other factors (Rodriguez-Galiano et al. 2018).
Furthermore, these weighted methods usually rely exclusively on expert knowledge
(Biotto et al. 2009, Matos et al. 2012, Chu et al. 2013) or data-driven approaches, such
as Logistic Regression (Keser et al. 2012, Lucendo-Monedero et al. 2015) or

Figure 6. Map of illegal landfill occurrence probability: (a) Random Forest; (b) Feature Random
Forest; (c) Guide Regularised Random Forest.

Figure 7. Success rate. Solid line (AFGRRF), dash-dotted line (ARF), and dotted line (AFRF).
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Discriminant Analysis (Quesada-Ruiz et al. 2019b). Other studies applied feature extrac-
tion, primarily Principal Component Analysis (Tasaki et al. 2007, Glanville and Chang
2015). In terms of GIS, expert knowledge methods are characterised by the combin-
ation and integration of multiple datasets. The intervention of an analyst with domain
knowledge is thus indispensable to, for instance, determine the parameters of the
method (Saaty 1980). In contrast, data-driven methods require less supervision to inte-
grate multiple data layers to solve a geospatial problem.

While feature selection-based studies are scarce, there are a few examples of the
application of embedded and wrapper algorithms using logistic regression with for-
ward or backward search (Quesada-Ruiz et al. 2018, 2019b). Weighted methods build
models that assign different importance to each feature of the feature space, consider-
ing subjective expert knowledge or filter-based, such the Analytic Hierarchy Process of
Saaty Method applied widely in GIS science (Saaty 1980). On the other hand, feature
extraction and feature selection have less expert intervention than weighted methods,
removing spurious or redundant features and reducing the feature space, either by
combining the most relevant features or selecting them in an unbiased manner.
Therefore, weighted methods consider the whole feature set, even when the statistical
significance is low. Feature extraction allows removal of the least significant new fea-
tures, but requires a subsequent selection process (selecting the most informative
components based on the percentage of explained variance in Principal Component
Analysis), with wrapper-based feature selection being the only fully automat-
able approach.

The definition of IL probability thresholds should be considered an important phase
in the process of obtaining accurate binary/hard maps. Weighted methods (Biotto
et al. 2009, Matos et al. 2012) and data-driven methods (Lucendo-Monedero et al.
2015, Quesada-Ruiz et al. 2019b) for mapping IL reclassified continuous values (i.e.
between 0 and 1) consider a threshold value of 0.5. This threshold definition is arbi-
trary, as it relies on a symmetrical statistical distribution of probability values without
considering spatial distribution or accuracy metrics. There are alternatives to arbitrarily
choosing thresholds, such as analysis of ROC curves where a trade-off is sought
between True Positive and False Negative rates to avoid overestimation and underesti-
mation, respectively (Chu et al. 2013, Rodriguez-Galiano et al. 2014). The application of
ROC is widely used in many scientific fields, such as bioinformatics, where a positive
or negative diagnosis for certain diseases might be equally relevant (Beck and Shultz
1986). However, geoscience studies focusing on the spatial distribution of a binary
phenomenon are different. Including negative cases for optimising threshold values
could lead to underestimation of IL when negative occurrences are more frequent (i.e.
there are more locations without IL than with IL). Therefore, our study or other spa-
tially driven studies, such as landslides (Dahal et al. 2008, Hong et al. 2017, Chen et al.
2019) or mining (Carranza et al. 2008, Rodriguez-Galiano et al. 2015), focus on the
positive cases. All of these studies are characterised by their interest in predicting a
minimal area with the highest accuracy in positive cases, thus reducing costs associ-
ated with prospecting or monitoring, Hence, the method proposed not only could
improve the delimitation of potentially affected areas by ILs but it could also facilitate
the evaluation of the possible costs of recovery, or the implementation of dissuasive
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and surveillance measures by minimizing the area (Quesada-Ruiz et al. 2019b). This
paper proposes using SR as an alternative method to ROC for mapping binary prob-
lems, considering the TPR together with the area instead of the false positive rate.
Figure 7 presents the results obtained from soft models, showing the percentage of
cases correctly classified regarding affected area. SR allowed identifying AFGRRF as the
model with smallest affected area for a TPR above 90%. SR also facilitated distinguish-
ing affected areas, maximising the accuracy of positive occurrences while minimising
the affected area (see Figure 5). The role of features to minimise the affected area was
reinforced by using SR in a feature selection approach inside a wrapper. Modifying the
GRRF algorithm to build a wrapper with SR as the accuracy metric may offer new
methodological perspectives for feature selection when the phenomenon being
studied has a binary behaviour, considering not just the overall accuracy metric but
also the spatial criterion. Nevertheless, the application of AFGRRF has some limitations
and requirements: (i) there must be a sufficiently large geospatial database with a
large sampling size to assess and compare its application with respect to other feature
selection methods; (ii) sampling must be separated into training, test 1 and test 2; (iii)
an additional test (T1 in our case) is needed to optimise the affected area, that it is
different from the test (T2 in our case) used to evaluate the overall accuracy of the
models; (iv) a balanced sampling between negative and positive cases. In this sense,
AFGRRF offers new perspectives for its application to other binary phenomenon such
as: landslide prevention, flood prevention, ecosystem conservation, infectious disease
or agricultural pest control. The sensitivity of the method to noise could also be
studied, attending the errors in the positive or negative occurrences of the binary phe-
nomenon, as well as its sensitivity to the reduction of the training data.

6. Conclusions

Predictive modelling of binary phenomena such as presence or absence focuses on
the application of numerical methods to estimate the probability of occurrence of a
phenomenon. This paper proposes a new method for feature selection that modifies
the GRRF algorithm for use inside a wrapper, improving the mapping and modelling
of binary phenomena and the accuracy of the affected area mapping to reduce envir-
onmental management costs of binary phenomena. AFGRRF addressed the ‘Rashomon
effect’ or the multiplicity of good models. This new method, AFGRRF, uses a new met-
ric for feature selection (SR), selecting the model built from a feature subset that mini-
mises the affected area within multiple accurate models. This approach is an
alternative to previously applied overall accuracy-based feature selection methods. Its
novelty resides in selecting a feature subset that optimises both the True Positive Rate
(TPR) and the potentially affected area using the SR. Hence, AFGRRF may offer new
GIS methodological perspectives for feature selection in GISscience when the phenom-
enon being studied has a binary behaviour, considering not just the TPR metric but
also the spatial criterion. In this sense, AFGRFF achieve to obtain a spatial distribution
of the binary phenomenon without overestimation or underestimation consistent with
respect to the most important explanatory features and allowing it replicability with
certain stability. Probability maps are usually transformed into hard maps to facilitate

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2489



management actions. Hard maps are obtained using arbitrary thresholds that assume
a symmetrical statistical distribution of probability values or other more sophisticated
approaches, such as ROC. However, these approaches do not take into consideration
the accuracy of the classifications with the extent of the affected or affected area. In
this sense, geoscience studies are interested in predicting the minimal distribution
area with the highest accuracy in positive cases in order to reduce the costs of pro-
specting or monitoring. Hence, our method proposed facilitated distinguishing
affected areas, maximising the accuracy of positive occurrences while minimising the
affected area and identifying the model with smallest affected area for a TPR above
90%. AFGRRF was tested on the predictive modelling of ILs in the Canary Islands. The
performance of AFGRRF was compared to five different RF-based methods, showing
the capability of AFGRRF to reduce the affected area without a drastic decrease in
overall accuracy.
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