Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127134
Título: BeCAPTCHA-Type: Biometric Keystroke Data Generation for Improved Bot Detection
Autores/as: Dealcala, Daniel
Morales, Aythami
Tolosana, Ruben
Acien, Alejandro
Fierrez, Julian
Hernandez, Santiago
Ferrer Ballester, Miguel Ángel 
Díaz Cabrera, Moisés 
Clasificación UNESCO: 3304 Tecnología de los ordenadores
Palabras clave: Support vector machines
Biometrics (access control)
Biological system modeling
Detectors
Chatbots
Fecha de publicación: 2023
Publicación seriada: IEEE Computer Society Conference on Computer Vision and Pattern Recognition workshops 
Conferencia: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2023) 
Resumen: This work proposes a data driven learning model for the synthesis of keystroke biometric data. The proposed method is compared with two statistical approaches based on Universal and User-dependent models. These approaches are validated on a bot detection task, using the keystroke synthetic data to improve the training process of keystroke-based bot detection systems. Our experimental framework considers a dataset with 136 million keystroke events from 168 thousand subjects. We have analyzed the performance of the three synthesis approaches through qualitative and quantitative experiments. Different bot detectors are considered based on several supervised classifiers (Support Vector Machine, Random Forest, Gaussian Naive Bayes and a Long Short-Term Memory network) and a learning framework including human and synthetic samples. The experiments demonstrate the realism of the synthetic samples. The classification results suggest that in scenarios with large labeled data, these synthetic samples can be detected with high accuracy. However, if the proposed synthetic data is nor properly modelled using massive data by bot detectors, then that data will be very difficult to detect even for the most sophisticate bot detectors. Furthermore, these results show the great potential of the presented models for improving the training of bot detection technology.
URI: http://hdl.handle.net/10553/127134
ISBN: 9798350302493
ISSN: 2160-7508
DOI: 10.1109/CVPRW59228.2023.00112
Fuente: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops[ISSN 2160-7508],v. 2023-June, p. 1051-1060, (Enero 2023)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Visitas

76
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.