Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127134
Campo DC Valoridioma
dc.contributor.authorDealcala, Danielen_US
dc.contributor.authorMorales, Aythamien_US
dc.contributor.authorTolosana, Rubenen_US
dc.contributor.authorAcien, Alejandroen_US
dc.contributor.authorFierrez, Julianen_US
dc.contributor.authorHernandez, Santiagoen_US
dc.contributor.authorFerrer Ballester, Miguel Ángelen_US
dc.contributor.authorDíaz Cabrera, Moisésen_US
dc.date.accessioned2023-10-04T13:08:18Z-
dc.date.available2023-10-04T13:08:18Z-
dc.date.issued2023en_US
dc.identifier.isbn9798350302493en_US
dc.identifier.issn2160-7508en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/127134-
dc.description.abstractThis work proposes a data driven learning model for the synthesis of keystroke biometric data. The proposed method is compared with two statistical approaches based on Universal and User-dependent models. These approaches are validated on a bot detection task, using the keystroke synthetic data to improve the training process of keystroke-based bot detection systems. Our experimental framework considers a dataset with 136 million keystroke events from 168 thousand subjects. We have analyzed the performance of the three synthesis approaches through qualitative and quantitative experiments. Different bot detectors are considered based on several supervised classifiers (Support Vector Machine, Random Forest, Gaussian Naive Bayes and a Long Short-Term Memory network) and a learning framework including human and synthetic samples. The experiments demonstrate the realism of the synthetic samples. The classification results suggest that in scenarios with large labeled data, these synthetic samples can be detected with high accuracy. However, if the proposed synthetic data is nor properly modelled using massive data by bot detectors, then that data will be very difficult to detect even for the most sophisticate bot detectors. Furthermore, these results show the great potential of the presented models for improving the training of bot detection technology.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Computer Society Conference on Computer Vision and Pattern Recognition workshopsen_US
dc.sourceIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops[ISSN 2160-7508],v. 2023-June, p. 1051-1060, (Enero 2023)en_US
dc.subject3304 Tecnología de los ordenadoresen_US
dc.subject.otherSupport vector machinesen_US
dc.subject.otherBiometrics (access control)en_US
dc.subject.otherBiological system modelingen_US
dc.subject.otherDetectorsen_US
dc.subject.otherChatbotsen_US
dc.titleBeCAPTCHA-Type: Biometric Keystroke Data Generation for Improved Bot Detectionen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceIEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2023)en_US
dc.identifier.doi10.1109/CVPRW59228.2023.00112en_US
dc.identifier.scopus85170824714-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57387227600-
dc.contributor.authorscopusid24476050500-
dc.contributor.authorscopusid55605251600-
dc.contributor.authorscopusid57188752487-
dc.contributor.authorscopusid55664171900-
dc.contributor.authorscopusid57860603900-
dc.contributor.authorscopusid55636321172-
dc.contributor.authorscopusid58552611900-
dc.identifier.eissn2160-7516-
dc.description.lastpage1060en_US
dc.description.firstpage1051en_US
dc.relation.volume2023-Juneen_US
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages10en_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2023en_US
dc.identifier.conferenceidevents150400-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate15-09-2004-
crisitem.event.eventsenddate18-09-2004-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.author.fullNameDíaz Cabrera, Moisés-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

1
actualizado el 10-nov-2024

Visitas

76
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.